這是我用於Kruskal算法的僞代碼。我在這裏使用的數據結構是一個鄰接矩陣。我得到的增長順序爲n^2
。我想知道這是否正確。使用鄰接矩陣作爲數據結構的Kruskal算法的時間效率
Kruskal’s Pseudo code
1. Kruskal (n, m, E)
2. // Purpose to compute the minimum spanning tree using Kruskal's algorithm
3. // Inputs
4. n - Number of vertices in the graph
5. m - Number of edges in the graph
6. E - Edge list consisting of set of edges along with equivalent weight
w - cost adjacency matrix with values >0
7. con – constrain adjacency matrix
8. // Output: - the minimum spanning tree along
9. count - shortest distance from the source to all other nodes
d - shortest distance from source to all other nodes
10. p - shortest path from source to destination
11. s - gives the nodes that are so far visited and nodes that are not visited
12. s [source] <- 1
13. For i = 0 to n-1 Do
14. If con[u, i] == T Then
15. add u to S
16. select edge that need to be connected
17. add cost associated with edge to get total cost of minimal spanning tree
18. Else
19. find u and d[u] such that d[u] is minimum and u Є V - S
20. add u to S
21. End If
22. If u = destination Then
23. End
24. End If
25. For every v Є V - S Do
26. If con[u, v] == T Then
27. d[v] <- d[u] + w[u, v]
28. p[v] <- u
29. ElseIf d[u] + w[u, v]<d[v] Then
30. d[v] <- d[u] + w[u, v]
31. p[v] <- u
32. End If
33. End For
34. End For
你的問題具體是什麼?現在感覺就像你希望我們只是爲你檢查你的作業。 – templatetypedef 2012-02-01 07:44:00
沒有兄弟..我計算它的值是n2。但是從我所做的所有研究中,我無法找到在kruskal中使用鄰接矩陣和時間複雜度的解釋。我需要一個關於克魯斯卡爾時間複雜性的專家意見.. – Gihan 2012-02-01 07:46:49
順便說一下,psudocode是錯誤的..它實際上是dijestra algo – Gihan 2012-02-02 10:09:45