1
I將這些數據作爲訓練集和屬性PlayTennise作爲目標。在weka上使用j48進行分類
@relation Weka
@attribute Day {D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14}
@attribute Outlook {Sunny,Overcast,Rain}
@attribute Temperature {Hot,Mild,Cool}
@attribute Humidity {High,Normal}
@attribute Wind {Weak,Strong}
@attribute PlayTennis {No,Yes}
@data
D1,Sunny,Hot,High,Weak,No
D2,Sunny,Hot,High,Strong,No
D3,Overcast,Hot,High,Weak,Yes
D4,Rain,Mild,High,Weak,Yes
D5,Rain,Cool,Normal,Weak,Yes
D6,Rain,Cool,Normal,Strong,No
D7,Overcast,Cool,Normal,Strong,Yes
D8,Sunny,Mild,High,Weak,No
D9,Sunny,Cool,Normal,Weak,Yes
D10,Rain,Mild,Normal,Weak,Yes
D11,Sunny,Mild,Normal,Strong,Yes
D12,Overcast,Mild,High,Strong,Yes
D13,Overcast,Hot,Normal,Weak,Yes
D14,Rain,Mild,High,Strong,No
另外,我給weka提供測試集的數據,但只是將目標[是,否]轉換爲'?'。 使得:
@relation Weka2
@attribute Day {D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14}
@attribute Outlook {Sunny,Overcast,Rain}
@attribute Temperature {Hot,Mild,Cool}
@attribute Humidity {High,Normal}
@attribute Wind {Weak,Strong}
@attribute PlayTennis {No,Yes}
@data
D1,Sunny,Hot,High,Weak,?
D2,Sunny,Hot,High,Strong,?
D3,Overcast,Hot,High,Weak,?
D4,Rain,Mild,High,Weak,?
D5,Rain,Cool,Normal,Weak,?
D6,Rain,Cool,Normal,Strong,?
D7,Overcast,Cool,Normal,Strong,?
D8,Sunny,Mild,High,Weak,?
D9,Sunny,Cool,Normal,Weak,?
D10,Rain,Mild,Normal,Weak,?
D11,Sunny,Mild,Normal,Strong,?
D12,Overcast,Mild,High,Strong,?
D13,Overcast,Hot,Normal,Weak,?
D14,Rain,Mild,High,Strong,?
點擊開始,但結果曾這樣說:
=== Run information ===
Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: Weka
Instances: 14
Attributes: 6
Day
Outlook
Temperature
Humidity
Wind
PlayTennis
Test mode: user supplied test set: size unknown (reading incrementally)
=== Classifier model (full training set) ===
J48 pruned tree
------------------
Outlook = Sunny
| Humidity = High: No (3.0)
| Humidity = Normal: Yes (2.0)
Outlook = Overcast: Yes (4.0)
Outlook = Rain
| Wind = Weak: Yes (3.0)
| Wind = Strong: No (2.0)
Number of Leaves : 5
Size of the tree : 8
Time taken to build model: 0 seconds
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0 seconds
=== Summary ===
Total Number of Instances 0
Ignored Class Unknown Instances 7
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.000 0.000 0.000 0.000 0.000 0.000 ? ? No
0.000 0.000 0.000 0.000 0.000 0.000 ? ? Yes
Weighted Avg. NaN NaN NaN NaN NaN NaN NaN NaN
=== Confusion Matrix ===
a b <-- classified as
0 0 | a = No
0 0 | b = Yes
它說,有「忽略類未知實例= 14」和「總實例數= 0」
我不明白我該做什麼?
請幫幫我嗎?
坦克,我做了,我設置了「輸出預測」,但「未知實例= [所有實例]」存在。每個實例的預測誤差等於1 –
您將目標值放回到測試數據集中,但評估仍然沒有意義? – Walter
我將確切的訓練數據文件複製到新文件中,只需將目標屬性yes或no更改爲'?'即可。但它表示所有實例都屬於「類未知實例」。 –