2012-11-21 61 views
5

我正在尋找一種有效的方法來查找給定多邊形的一階鄰居。我的數據格式爲shapefile使用shapefile多邊形查找一階鄰居

我的第一個想法是計算多邊形的質心的x和y座標,以找到鄰居的質心。

import pysal 
from pysal.common import * 
import pysal.weights 
import numpy as np 
from scipy import sparse,float32 
import scipy.spatial 
import os, gc, operator 


def get_points_array_from_shapefile(inFile): 
    """ 
    Gets a data array of x and y coordinates from a given shape file 

    Parameters 
    ---------- 
    shapefile: string name of a shape file including suffix 

    Returns 
    ------- 
    points: array (n,2) a data array of x and y coordinates 

    Notes 
    ----- 
    If the given shape file includes polygons, 
    this function returns x and y coordinates of the polygons' centroids 

    Examples 
    -------- 
    Point shapefile 
    >>> from pysal.weights.util import get_points_array_from_shapefile 
    >>> xy = get_points_array_from_shapefile('../examples/juvenile.shp') 
    >>> xy[:3] 
    array([[ 94., 93.], 
      [ 80., 95.], 
      [ 79., 90.]]) 

    Polygon shapefile 
    >>> xy = get_points_array_from_shapefile('../examples/columbus.shp') 
    >>> xy[:3] 
    array([[ 8.82721847, 14.36907602], 
      [ 8.33265837, 14.03162401], 
      [ 9.01226541, 13.81971908]]) 

    (source: https://code.google.com/p/pysal/source/browse/trunk/pysal/weights/util.py?r=1013) 

    """ 
    f = pysal.open(inFile) 
    shapes = f.read() 
    if f.type.__name__ == 'Polygon': 
     data = np.array([shape.centroid for shape in shapes]) 
    elif f.type.__name__ == 'Point': 
     data = np.array([shape for shape in shapes]) 
    f.close() 
    return data 


inFile = "../examples/myshapefile.shp" 
my_centr = get_points_array_from_shapefile(inFile) 

這種方法可能適用於常規網格,但在我的情況下,我需要找到一個「更一般」的解決方案。該圖顯示了問題。考慮黃色多邊形有裁判。鄰居的多邊形是灰色的多邊形。使用質心 - 鄰居方法,清晰的藍色多邊形被認爲是鄰居,但與黃色多邊形沒有共同的一面。

Efficiently finding the 1st order neighbors of 200k polygons改性最近溶液可以是以下:

from collections import defaultdict 
inFile = 'C:\\MultiShapefile.shp' 

shp = osgeo.ogr.Open(inFile) 
layer = shp.GetLayer() 
BlockGroupVertexDictionary = dict() 
for index in xrange(layer.GetFeatureCount()): 
    feature = layer.GetFeature(index) 
    FID = str(feature.GetFID()) 
    geometry = feature.GetGeometryRef() 
    pts = geometry.GetGeometryRef(0) 
    # delete last points because is the first (see shapefile polygon topology) 
    for p in xrange(pts.GetPointCount()-1): 
     PointText = str(pts.GetX(p))+str(pts.GetY(p)) 
     # If coordinate is already in dictionary, append this BG's ID 
     if PointText in BlockGroupVertexDictionary: 
      BlockGroupVertexDictionary[PointText].append(FID) 
     # If coordinate is not already in dictionary, create new list with this BG's ID 
     else: 
      BlockGroupVertexDictionary[PointText] = [FID] 

利用此解決方案,我有頂點的字典座標作爲在那個座標有一個頂點的鍵和塊組ID的列表作爲價值。

>>> BlockGroupVertexDictionary 
{'558324.3057036361423.57178': ['18'], 
'558327.4401686361422.40755': ['18', '19'], 
'558347.5890836361887.12271': ['1'], 
'558362.8645026361662.38757': ['17', '18'], 
'558378.7836876361760.98381': ['14', '17'], 
'558389.9225016361829.97259': ['14'], 
'558390.1235856361830.41498': ['1', '14'], 
'558390.1870856361652.96599': ['17', '18', '19'], 
'558391.32786361398.67786': ['19', '20'], 
'558400.5058556361853.25597': ['1'], 
'558417.6037156361748.57558': ['14', '15', '17', '19'], 
'558425.0594576362017.45522': ['1', '3'], 
'558438.2518686361813.61726': ['14', '15'], 
'558453.8892486362065.9571': ['3', '5'], 
'558453.9626046361375.4135': ['20', '21'], 
'558464.7845966361733.49493': ['15', '16'], 
'558474.6171066362100.82867': ['4', '5'], 
'558476.3606496361467.63697': ['21'], 
'558476.3607186361467.63708': ['26'], 
'558483.1668826361727.61931': ['19', '20'], 
'558485.4911846361797.12981': ['15', '16'], 
'558520.6376956361649.94611': ['25', '26'], 
'558525.9186066361981.57914': ['1', '3'], 
'558527.5061096362189.80664': ['4'], 
'558529.0036896361347.5411': ['21'], 
'558529.0037236361347.54108': ['26'], 
'558529.8873646362083.17935': ['4', '5'], 
'558533.062376362006.9792': ['1', '3'], 
'558535.4436256361710.90985': ['9', '16', '20'], 
'558535.4437266361710.90991': ['25'], 
'558548.7071816361705.956': ['9', '10'], 
'558550.2603156361432.56769': ['26'], 
'558550.2603226361432.56763': ['21'], 
'558559.5872216361771.26884': ['9', '16'], 
'558560.3288756362178.39003': ['4', '5'], 
'558568.7811926361768.05997': ['1', '9', '10'], 
'558572.749956362041.11051': ['3', '5'], 
'558573.5437016362012.53546': ['1', '3'], 
'558575.3048386362048.77518': ['2', '3'], 
'558576.189546362172.87328': ['5'], 
'558577.1149386361695.34587': ['7', '10'], 
'558579.0999636362020.47297': ['1', '3'], 
'558581.6312396362025.36096': ['0', '1'], 
'558586.7728956362035.28967': ['0', '3'], 
'558589.8015336362043.7987': ['2', '3'], 
'558601.3250076361686.30355': ['7'], 
'558601.3250736361686.30353': ['25'], 
'558613.7793476362164.19871': ['2', '5'], 
'558616.4062876361634.7097': ['7'], 
'558616.4063116361634.70972': ['25'], 
'558618.129066361634.29952': ['7', '11', '22'], 
'558618.1290896361634.2995': ['25'], 
'558626.9644156361875.47515': ['10', '11'], 
'558631.2229836362160.17325': ['2'], 
'558632.0261236361600.77448': ['25', '26'], 
'558639.495586361898.60961': ['11', '13'], 
'558650.4935686361918.91358': ['12', '13'], 
'558659.2473416361624.50945': ['8', '11', '22', '24'], 
'558664.5218136361857.94836': ['7', '10'], 
'558666.4126376361622.80343': ['8', '24'], 
'558675.1439056361912.52276': ['12', '13'], 
'558686.3385396361985.08892': ['0', '1'], 
.................. 
................. 
'558739.4377836361931.57279': ['11', '13'], 
'558746.8758486361973.84475': ['11', '13'], 
'558751.3440576361902.20399': ['6', '11'], 
'558768.8067026361258.4715': ['26'], 
'558779.9170276361961.16408': ['6', '11'], 
'558785.7399596361571.47416': ['22', '24'], 
'558791.5596546361882.09619': ['8', '11'], 
'558800.2351726361877.75843': ['6', '8'], 
'558802.7700816361332.39227': ['26'], 
'558802.770176361332.39218': ['22'], 
'558804.7899976361336.78827': ['22'], 
'558812.9707376361565.14513': ['23', '24'], 
'558833.2667696361940.68932': ['6', '24'], 
'558921.2068976361539.98868': ['22', '23'], 
'558978.3570116361885.00604': ['23', '24'], 
'559022.80716361982.3729': ['23'], 
'559096.8905816361239.42141': ['22'], 
'559130.7573166361935.80614': ['23'], 
'559160.3907086361434.15513': ['22']} 

enter image description here

+0

什麼是一階鄰居對非規則網格的準確定義?這是否意味着「共享優勢」? – martineau

+0

@martineau,1階鄰居都是帶有公共邊界的多邊形(如果是shapefile,則爲頂點)與多邊形-i –

+1

@martineau。我在谷歌上找到這個鏈接。 http://gis.stackexchange.com/questions/17457/efficiently-finding-the-1st-order-neighbors-of-200k-polygons 看起來不錯,但我希望在Arcmap模塊外工作 –

回答

0

我不熟悉所使用的特定的數據格式,但無論如何,認爲下面的想法是可行的。

在Python中,您可以使用數組元組來設置數組的元組,即(x,y)(x1,y1,x2,y2),所以應該可以創建一個集合來表示給定多邊形中的所有點或邊。之後,您將可以使用非常快速的交集操作來查找所有1st階鄰居。

您可以使用某種微不足道的拒絕測試來加速過程,以避免進一步處理不可能是鄰居的多邊形 - 也許使用多邊形的質心思想。

這個解釋是否有意義?

+0

太好了,對不起。我正在嘗試寫一個新的方法來存儲一個字典中的所有單頂點多邊形並添加每個多邊形的ID –

+0

@Gianni:不清楚查找給定多邊形的一階相鄰元素有什麼關係 - - 爲了做到這一點,您將不得不在某個級別上比較頂點或邊緣向量。 – martineau

+0

看看我的新解決方案。從字典中,我需要了解多邊形'18'多邊形具有公共頂點 –