我正在嘗試將multiprocessing添加到某些代碼中,這些代碼的功能無法修改。我想以異步方式將這些函數作爲作業提交給多處理池。我正在做一些很像代碼here的代碼。但是,我不確定如何跟蹤結果。如何知道返回的結果對應哪個應用函數?如何跟蹤從多處理池返回的異步結果
需要強調的重要一點是,我無法修改現有功能(其他情況依賴於它們保持原樣),並且可以按照與函數作業的應用順序不同的順序返回結果游泳池。
感謝您的任何想法!
編輯:一些嘗試代碼如下:
import multiprocessing
from multiprocessing import Pool
import os
import signal
import time
import inspect
def multiply(multiplicand1=0, multiplicand2=0):
return multiplicand1*multiplicand2
def workFunctionTest(**kwargs):
time.sleep(3)
return kwargs
def printHR(object):
"""
This function prints a specified object in a human readable way.
"""
# dictionary
if isinstance(object, dict):
for key, value in sorted(object.items()):
print u'{a1}: {a2}'.format(a1=key, a2=value)
# list or tuple
elif isinstance(object, list) or isinstance(object, tuple):
for element in object:
print element
# other
else:
print object
class Job(object):
def __init__(
self,
workFunction=workFunctionTest,
workFunctionKeywordArguments={'testString': "hello world"},
workFunctionTimeout=1,
naturalLanguageString=None,
classInstance=None,
resultGetter=None,
result=None
):
self.workFunction=workFunction
self.workFunctionKeywordArguments=workFunctionKeywordArguments
self.workFunctionTimeout=workFunctionTimeout
self.naturalLanguageString=naturalLanguageString
self.classInstance=self.__class__.__name__
self.resultGetter=resultGetter
self.result=result
def description(self):
descriptionString=""
for key, value in sorted(vars(self).items()):
descriptionString+=str("{a1}:{a2} ".format(a1=key, a2=value))
return descriptionString
def printout(self):
"""
This method prints a dictionary of all data attributes.
"""
printHR(vars(self))
class JobGroup(object):
"""
This class acts as a container for jobs. The data attribute jobs is a list of job objects.
"""
def __init__(
self,
jobs=None,
naturalLanguageString="null",
classInstance=None,
result=None
):
self.jobs=jobs
self.naturalLanguageString=naturalLanguageString
self.classInstance=self.__class__.__name__
self.result=result
def description(self):
descriptionString=""
for key, value in sorted(vars(self).items()):
descriptionString+=str("{a1}:{a2} ".format(a1=key, a2=value))
return descriptionString
def printout(self):
"""
This method prints a dictionary of all data attributes.
"""
printHR(vars(self))
def initialise_processes():
signal.signal(signal.SIGINT, signal.SIG_IGN)
def execute(
jobObject=None,
numberOfProcesses=multiprocessing.cpu_count()
):
# Determine the current function name.
functionName=str(inspect.stack()[0][3])
def collateResults(result):
"""
This is a process pool callback function which collates a list of results returned.
"""
# Determine the caller function name.
functionName=str(inspect.stack()[1][3])
print("{a1}: result: {a2}".format(a1=functionName, a2=result))
results.append(result)
def getResults(job):
# Determine the current function name.
functionName=str(inspect.stack()[0][3])
while True:
try:
result=job.resultGetter.get(job.workFunctionTimeout)
break
except multiprocessing.TimeoutError:
print("{a1}: subprocess timeout for job".format(a1=functionName, a2=job.description()))
#job.result=result
return result
# Create a process pool.
pool1 = multiprocessing.Pool(numberOfProcesses, initialise_processes)
print("{a1}: pool {a2} of {a3} processes created".format(a1=functionName, a2=str(pool1), a3=str(numberOfProcesses)))
# Unpack the input job object and submit it to the process pool.
print("{a1}: unpacking and applying job object {a2} to pool...".format(a1=functionName, a2=jobObject))
if isinstance(jobObject, Job):
# If the input job object is a job, apply it to the pool with its associated timeout specification.
# Return a list of results.
job=jobObject
print("{a1}: job submitted to pool: {a2}".format(a1=functionName, a2=job.description()))
# Apply the job to the pool, saving the object pool.ApplyResult to the job object.
job.resultGetter=pool1.apply_async(
func=job.workFunction,
kwds=job.workFunctionKeywordArguments
)
# Get results.
# Acquire the job result with respect to the specified job timeout and apply this result to the job data attribute result.
print("{a1}: getting results for job...".format(a1=functionName))
job.result=getResults(job)
print("{a1}: job completed: {a2}".format(a1=functionName, a2=job.description()))
print("{a1}: job result: {a2}".format(a1=functionName, a2=job.result))
# Return the job result from execute.
return job.result
pool1.terminate()
pool1.join()
elif isinstance(jobObject, JobGroup):
# If the input job object is a job group, cycle through each job and apply it to the pool with its associated timeout specification.
for job in jobObject.jobs:
print("{a1}: job submitted to pool: {a2}".format(a1=functionName, a2=job.description()))
# Apply the job to the pool, saving the object pool.ApplyResult to the job object.
job.resultGetter=pool1.apply_async(
func=job.workFunction,
kwds=job.workFunctionKeywordArguments
)
# Get results.
# Cycle through each job and and append the result for the job to a list of results.
results=[]
for job in jobObject.jobs:
# Acquire the job result with respect to the specified job timeout and apply this result to the job data attribute result.
print("{a1}: getting results for job...".format(a1=functionName))
job.result=getResults(job)
print("{a1}: job completed: {a2}".format(a1=functionName, a2=job.description()))
#print("{a1}: job result: {a2}".format(a1=functionName, a2=job.result))
# Collate the results.
results.append(job.result)
# Apply the list of results to the job group data attribute results.
jobObject.results=results
print("{a1}: job group results: {a2}".format(a1=functionName, a2=jobObject.results))
# Return the job result list from execute.
return jobObject.results
pool1.terminate()
pool1.join()
else:
# invalid input object
print("{a1}: invalid job object {a2}".format(a1=functionName, a2=jobObject))
def main():
print('-'*80)
print("MULTIPROCESSING SYSTEM DEMONSTRATION\n")
# Create a job.
print("# creating a job...\n")
job1=Job(
workFunction=workFunctionTest,
workFunctionKeywordArguments={'testString': "hello world"},
workFunctionTimeout=4
)
print("- printout of new job object:")
job1.printout()
print("\n- printout of new job object in logging format:")
print job1.description()
# Create another job.
print("\n# creating another job...\n")
job2=Job(
workFunction=multiply,
workFunctionKeywordArguments={'multiplicand1': 2, 'multiplicand2': 3},
workFunctionTimeout=6
)
print("- printout of new job object:")
job2.printout()
print("\n- printout of new job object in logging format:")
print job2.description()
# Create a JobGroup object.
print("\n# creating a job group (of jobs 1 and 2)...\n")
jobGroup1=JobGroup(
jobs=[job1, job2],
)
print("- printout of new job group object:")
jobGroup1.printout()
print("\n- printout of new job group object in logging format:")
print jobGroup1.description()
# Submit the job group.
print("\nready to submit job group")
response=raw_input("\nPress Enter to continue...\n")
execute(jobGroup1)
response=raw_input("\nNote the results printed above. Press Enter to continue the demonstration.\n")
# Demonstrate timeout.
print("\n # creating a new job in order to demonstrate timeout functionality...\n")
job3=Job(
workFunction=workFunctionTest,
workFunctionKeywordArguments={'testString': "hello world"},
workFunctionTimeout=1
)
print("- printout of new job object:")
job3.printout()
print("\n- printout of new job object in logging format:")
print job3.description()
print("\nNote the timeout specification of only 1 second.")
# Submit the job.
print("\nready to submit job")
response=raw_input("\nPress Enter to continue...\n")
execute(job3)
response=raw_input("\nNote the recognition of timeouts printed above. This concludes the demonstration.")
print('-'*80)
if __name__ == '__main__':
main()
編輯:這個問題已經被置於[暫停]以下陳述的原因:
「的問題詢問碼必須表明對所解決問題的最低限度理解,包括嘗試解決方案,爲什麼他們不工作,以及預期結果。另請參閱:Stack Overflow question checklist「
這個問題不是請求代碼;它正在請求思想,一般指導。展示了對所考慮問題的最小理解(注意術語「多處理」,「池」和「異步」的正確使用以及注意事項the reference to prior code)。關於嘗試的解決方案,我承認嘗試解決方案的努力將會是有益的。我現在添加了這樣的代碼。我希望我已經解決了導致[擱置]地位的問題。
非常感謝您對您的明確建議和指導。如你所說,我用函數包裝和您的使用功能作爲結果的字典中的關鍵的伎倆試驗。 ['''concurrent.futures'''(http://docs.python.org/3/library/concurrent.futures.html)看起來很有希望,我會盡快展開調查,太。再次感謝。 – d3pd
感謝您的回答。我有一個非常類似的問題沒有解決。如果您需要能夠在每個任務上設置超時並想知道哪些輸入導致超時,該怎麼辦? – chrishiestand