2014-12-22 46 views
0

我有一個帶有下列值的Pandas系列。我們如何進行整合來找到這個陰謀下的區域?無法使用Python集成離散點集合

Hour 
0.00000 1.195617 
0.23990 2.408227 
0.47980 1.256069 
0.71970 2.227347 
0.95960 1.397774 
1.19949 1.896309 
1.43939 1.309016 
1.67929 1.827614 
1.91919 1.383252 
2.15909 1.630766 
2.39899 1.360364 
2.63889 1.541367 
2.87879 1.560319 
3.11869 0.743437 
3.35859 1.549370 
... 
20.39141 2.067811 
20.63131 1.938257 
20.87121 1.944990 
21.11111 1.853212 
21.35101 1.702590 
21.59091 1.746243 
21.83081 2.337570 
22.07071 3.773000 
22.31061 1.532937 
22.55051 1.178040 
22.79040 1.850222 
23.03030 1.092376 
23.27020 1.895959 
23.51010 0.966083 
23.75000 1.950073 
Name: Cost, Length: 100, dtype: float64 

cookbook試圖整合功能,但它拋出一個錯誤

TypeError: Setting <class 'pandas.core.index.Float64Index'> dtype to anything other than float64 or object is not supported 
+0

請出示完整的堆棧跟蹤導致'TypeError'否則它不可能知道哪個代碼錯誤地設置了'dtype'。 –

回答

1

在菜譜食譜要求你使用pd.TimeSeries而不是pd.Series。您可以將索引轉換爲pd.Timestamp像這樣得到pd.TimeSeries

i = [0.00000, 
0.23990, 
0.47980, 
0.71970, 
0.95960, 
1.19949, 
1.43939, 
1.67929, 
1.91919, 
2.15909, 
2.39899, 
2.63889, 
2.87879, 
3.11869, 
3.35859] 
c = [1.195617, 
2.408227, 
1.256069, 
2.227347, 
1.397774, 
1.896309, 
1.309016, 
1.827614, 
1.383252, 
1.630766, 
1.360364, 
1.541367, 
1.560319, 
0.743437, 
1.549370] 

import pandas as pd 
s = pd.TimeSeries (index = [pd.Timestamp(k) for k in i], data = c) 
s.integrate() 

這應該屈服,

Out[29]: 
4.3059284999999994e-09