這裏有一個量化的方法利用broadcasting
創建餘弦/正弦輸入的2D
陣列版本:np.dot
2*pi*n*t/T
,然後使用matrix-multiplication
爲sum-reduction
-
r = np.arange(1,len(a))
S = 2*np.pi*r[:,None]*t/T
cS = np.cos(S)
sS = np.sin(S)
out = a[1:].dot(cS) - b[1:].dot(sS) + a[0]
進一步的性能提升
爲了進一步提升,我們可以利用numexpr
module來計算那些三角函數步 -
import numexpr as ne
cS = ne.evaluate('cos(S)')
sS = ne.evaluate('sin(S)')
運行測試 -
途徑 -
def original_app(t,a,b,T):
yn=np.ones(len(t))*a[0]
for n in range(1,len(a)):
yn=yn+(a[n]*np.cos(2*np.pi*n*t/T)-b[n]*np.sin(2*np.pi*n*t/T))
return yn
def vectorized_app(t,a,b,T):
r = np.arange(1,len(a))
S = (2*np.pi/T)*r[:,None]*t
cS = np.cos(S)
sS = np.sin(S)
return a[1:].dot(cS) - b[1:].dot(sS) + a[0]
def vectorized_app_v2(t,a,b,T):
r = np.arange(1,len(a))
S = (2*np.pi/T)*r[:,None]*t
cS = ne.evaluate('cos(S)')
sS = ne.evaluate('sin(S)')
return a[1:].dot(cS) - b[1:].dot(sS) + a[0]
此外,包括@保羅裝甲的帖子功能PP
。
計時 -
In [22]: # Setup inputs
...: n = 10000
...: t = np.random.randint(0,9,(n))
...: a = np.random.randint(0,9,(n))
...: b = np.random.randint(0,9,(n))
...: T = 3.45
...:
In [23]: print np.allclose(original_app(t,a,b,T), vectorized_app(t,a,b,T))
...: print np.allclose(original_app(t,a,b,T), vectorized_app_v2(t,a,b,T))
...: print np.allclose(original_app(t,a,b,T), PP(t,a,b,T))
...:
True
True
True
In [25]: %timeit original_app(t,a,b,T)
...: %timeit vectorized_app(t,a,b,T)
...: %timeit vectorized_app_v2(t,a,b,T)
...: %timeit PP(t,a,b,T)
...:
1 loops, best of 3: 6.49 s per loop
1 loops, best of 3: 6.24 s per loop
1 loops, best of 3: 1.54 s per loop
1 loops, best of 3: 1.96 s per loop
在你的例子中錯字,當然你的意思是'len(a)'? –
@Ahmed Fasih,這當然是正確的,更正,謝謝。 – NameOfTheRose
爲什麼不使用傅里葉逆變換?如果你想插入,你可以用零填充高頻。 – Dirklinux