我試圖從現有檢查點跟隨這些 instructions來訓練模型。張量流對象檢測從現有檢查點微調模型
我有configured對象檢測訓練管道使用faster_rcnn_resnet101_voc07.config配置。
在檢查站段我已經設置,其中位於預訓練模型faster_rcnn_resnet101_coco.tar.gz
Acording的的檢查點文件,這issue的fine_tune_checkpoint可以是包含三個文件的目錄路徑的目錄:(。 data-00000-of-00001,.index,.meta)。
所以我設置的目錄路徑 「的/ home /文檔/ car_dataset /模型/模型/火車」
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/docs/car_dataset/models/model/train"
from_detection_checkpoint: true
num_steps: 800000
data_augmentation_options {
random_horizontal_flip {
}
}
然而,當我執行腳本的訓練:
python object_detection/train.py --logtostderr\
--pipeline_config_path=/home/docs/car_dataset/models/model/faster_rcnn_resnet101_voc07.config\
--train_dir=/home/docs/car_dataset/models/model/train\
--num_gpus=2
我得到了錯誤:
tensorflow.python.framework.errors_impl.DataLossError: Unable to open table file /home/docs/car_dataset/models/model/train: Failed precondition: /home/docs/car_dataset/models/model/train: perhaps your file is in a different file format and you need to use a different restore operator?
我也試過設置pa TH到每個文件在目錄
fine_tune_checkpoint: "/home/docs/car_dataset/models/model/train/model.ckpt.meta"
,但我得到的錯誤:
tensorflow.python.framework.errors_impl.DataLossError: Unable to open table file /home/docs/car_dataset/models/model/train/model.ckpt.meta: Data loss: not an sstable (bad magic number): perhaps your file is in a different file format and you need to use a different restore operator?
什麼是定義在具有三個文件管道配置訓練模型前的正確方法:(。數據-00001,-index,.meta)。
Tensorflow版本: 1.2.1