2012-06-27 66 views
1

我使用版本0.7.3中的pandas.ols函數。當使用簡單迴歸與窗口迴歸時,我似乎得到調整後的$ R^2 $的值不一致。舉例來說,如果realizedDatapastData有600項,然後熊貓OLS中的R^2調整值不一致OLS

model = pandas.ols(y = realizedData, x = pastData, intercept = 0, window = 600) 

產生以下的輸出: -

-------------------------Summary of Regression Analysis------------------------- 

Formula: Y ~ <1> + <10> + <90000> 

Number of Observations:   596 
Number of Degrees of Freedom: 3 

R-squared:   0.6914 
Adj R-squared:  0.6904 

Rmse:   699.4880 

F-stat (3, 593): 664.3691, p-value:  0.0000 

Degrees of Freedom: model 2, resid 593 

-----------------------Summary of Estimated Coefficients------------------------ 
     Variable  Coef Std Err  t-stat p-value CI 2.5% CI 97.5% 
-------------------------------------------------------------------------------- 
      1  0.4171  0.0428  9.75  0.0000  0.3333  0.5010 
      10  0.4362  0.0688  6.34  0.0000  0.3014  0.5709 
     90000  0.0623  0.0319  1.95  0.0517 -0.0003  0.1249 
---------------------------------End of Summary--------------------------------- 

,而只是用

model = pandas.ols(y = realizedData, x = pastData, intercept = 0) 

給出: -

-------------------------Summary of Regression Analysis------------------------- 

Formula: Y ~ <1> + <10> + <90000> 

Number of Observations:   596 
Number of Degrees of Freedom: 3 

R-squared:   0.6914 
Adj R-squared:  0.3053 

Rmse:   699.4880 

F-stat (3, 593):  1.7909, p-value:  0.1477 

Degrees of Freedom: model 2, resid 593 

-----------------------Summary of Estimated Coefficients------------------------ 
     Variable  Coef Std Err  t-stat p-value CI 2.5% CI 97.5% 
-------------------------------------------------------------------------------- 
      1  0.4171  0.0428  9.75  0.0000  0.3333  0.5010 
      10  0.4362  0.0688  6.34  0.0000  0.3014  0.5709 
     90000  0.0623  0.0319  1.95  0.0517 -0.0003  0.1249 
---------------------------------End of Summary--------------------------------- 

請注意,除了所調整的$ R^2 $值之外,輸出是相同的。

這是一個錯誤還是我做錯了什麼?

回答

1

我認爲這與截獲的不足有關。你可以在GitHub上報告問題嗎?