了一下週圍搜索後,我沒有發現任何東西,這似乎爲ets
替代的蟒蛇真的有希望。儘管有一些嘗試:StatsModels和pycast's Forecasting methods,您可以檢查它們是否符合您的需求。
您可以用來解決缺少的實現的一個選項是使用subprocess模塊從python運行R腳本。有關於如何做到這一點的非常好的文章here。
爲了做到後來的:(前my_forecast.R
)
- 您需要創建的R腳本,該腳本將 計算(使用
ets
)和打印的天氣預報上文件或stdout
(使用cat()
命令),以便在腳本 運行後使用它們。
可以按以下運行從一個Python腳本將R腳本:
import subprocess
# You need to define the command that will run the Rscript from the subprocess
command = 'Rscript'
path2script = 'path/to/my_forecast.R'
cmd = [command, path2script]
# Option 1: If your script prints to a file
subprocess.run(cmd)
f = open('path/to/created/file', 'r')
(...Do stuff from here...)
# Option 2: If your script prints to stdout
forecasts = subprocess.check_output(cmd, universal_newlines=True)
(...Do stuff from here...)
您也可以爭論添加到您的cmd
,這將是您的RSCRIPT被用來作爲命令行參數,如下所示:
args = [arg0, arg1, ...]
cmd = [command, path2script] + args
Then pass cmd to the subprocess
編輯:
我在Holt-Winters Forecasting上發現了一系列文章:part1,part2和part3。除了容易在這些文章理解分析,格雷戈裏Trubetskoy(作者)提供了他開發的代碼:
初始趨勢:
def initial_trend(series, slen):
sum = 0.0
for i in range(slen):
sum += float(series[i+slen] - series[i])/slen
return sum/slen
# >>> initial_trend(series, 12)
# -0.7847222222222222
初始季節性成分:
def initial_seasonal_components(series, slen):
seasonals = {}
season_averages = []
n_seasons = int(len(series)/slen)
# compute season averages
for j in range(n_seasons):
season_averages.append(sum(series[slen*j:slen*j+slen])/float(slen))
# compute initial values
for i in range(slen):
sum_of_vals_over_avg = 0.0
for j in range(n_seasons):
sum_of_vals_over_avg += series[slen*j+i]-season_averages[j]
seasonals[i] = sum_of_vals_over_avg/n_seasons
return seasonals
# >>> initial_seasonal_components(series, 12)
# {0: -7.4305555555555545, 1: -15.097222222222221, 2: -7.263888888888888,
# 3: -5.097222222222222, 4: 3.402777777777778, 5: 8.069444444444445,
# 6: 16.569444444444446, 7: 9.736111111111112, 8: -0.7638888888888887,
# 9: 1.902777777777778, 10: -3.263888888888889, 11: -0.7638888888888887}
最後算法:
def triple_exponential_smoothing(series, slen, alpha, beta, gamma, n_preds):
result = []
seasonals = initial_seasonal_components(series, slen)
for i in range(len(series)+n_preds):
if i == 0: # initial values
smooth = series[0]
trend = initial_trend(series, slen)
result.append(series[0])
continue
if i >= len(series): # we are forecasting
m = i - len(series) + 1
result.append((smooth + m*trend) + seasonals[i%slen])
else:
val = series[i]
last_smooth, smooth = smooth, alpha*(val-seasonals[i%slen]) + (1-alpha)*(smooth+trend)
trend = beta * (smooth-last_smooth) + (1-beta)*trend
seasonals[i%slen] = gamma*(val-smooth) + (1-gamma)*seasonals[i%slen]
result.append(smooth+trend+seasonals[i%slen])
return result
# # forecast 24 points (i.e. two seasons)
# >>> triple_exponential_smoothing(series, 12, 0.716, 0.029, 0.993, 24)
# [30, 20.34449316666667, 28.410051892109554, 30.438122252647577, 39.466817731253066, ...
你可以把那些文件,例如:holtwinters.py
一個文件夾內結構如下:
forecast_folder
|
└── __init__.py
|
└── holtwinters.py
從這裏開始,這是一個Python模塊,你可以在每個項目結構內放置你想要在項目中的任何地方使用它,只需導入它。
以下是關於R包採用的方法的一些參考資料:https://www.otexts.org/fpp/7/7 http://robjhyndman.com/talks/ABS1.pdf。到目前爲止,我還沒有找到一個實現完整狀態空間框架的python包。 – Zach
你可以通過'rpy2'包使用Python的R工具嗎? –
@mfripp是的,我可以從Python中調用R,但是我更願意直接使用python,如果可以的話! – Zach