我實際上試圖通過Keras獲得VGG16的Sequential模型版本。是這樣的將VGG功能模型轉換爲Keras中的順序模型
from __future__ import division, print_function
import os, json
from glob import glob
import numpy as np
from scipy import misc, ndimage
from scipy.ndimage.interpolation import zoom
from keras import backend as K
from keras.layers.normalization import BatchNormalization
from keras.utils.data_utils import get_file
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout, Lambda
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.layers.pooling import GlobalAveragePooling2D
from keras.optimizers import SGD, RMSprop, Adam
from keras.preprocessing import image
import keras
import keras.applications.vgg16
from keras.layers import Input
input_tensor = Input(shape=(224,224,3))
VGG_model=keras.applications.vgg16.VGG16(weights='imagenet',include_top= True,input_tensor=input_tensor)
及其摘要:可以用獲得的功能版本
VGG_model.summary()
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
____________________________________________________________________________________________________
block1_conv1 (Convolution2D) (None, 224, 224, 64) 1792 input_1[0][0]
____________________________________________________________________________________________________
block1_conv2 (Convolution2D) (None, 224, 224, 64) 36928 block1_conv1[0][0]
____________________________________________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 block1_conv2[0][0]
____________________________________________________________________________________________________
block2_conv1 (Convolution2D) (None, 112, 112, 128) 73856 block1_pool[0][0]
____________________________________________________________________________________________________
block2_conv2 (Convolution2D) (None, 112, 112, 128) 147584 block2_conv1[0][0]
____________________________________________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 block2_conv2[0][0]
____________________________________________________________________________________________________
block3_conv1 (Convolution2D) (None, 56, 56, 256) 295168 block2_pool[0][0]
____________________________________________________________________________________________________
block3_conv2 (Convolution2D) (None, 56, 56, 256) 590080 block3_conv1[0][0]
____________________________________________________________________________________________________
block3_conv3 (Convolution2D) (None, 56, 56, 256) 590080 block3_conv2[0][0]
____________________________________________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 block3_conv3[0][0]
____________________________________________________________________________________________________
block4_conv1 (Convolution2D) (None, 28, 28, 512) 1180160 block3_pool[0][0]
____________________________________________________________________________________________________
block4_conv2 (Convolution2D) (None, 28, 28, 512) 2359808 block4_conv1[0][0]
____________________________________________________________________________________________________
block4_conv3 (Convolution2D) (None, 28, 28, 512) 2359808 block4_conv2[0][0]
____________________________________________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 block4_conv3[0][0]
____________________________________________________________________________________________________
block5_conv1 (Convolution2D) (None, 14, 14, 512) 2359808 block4_pool[0][0]
____________________________________________________________________________________________________
block5_conv2 (Convolution2D) (None, 14, 14, 512) 2359808 block5_conv1[0][0]
____________________________________________________________________________________________________
block5_conv3 (Convolution2D) (None, 14, 14, 512) 2359808 block5_conv2[0][0]
____________________________________________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 block5_conv3[0][0]
____________________________________________________________________________________________________
flatten (Flatten) (None, 25088) 0 block5_pool[0][0]
____________________________________________________________________________________________________
fc1 (Dense) (None, 4096) 102764544 flatten[0][0]
____________________________________________________________________________________________________
fc2 (Dense) (None, 4096) 16781312 fc1[0][0]
____________________________________________________________________________________________________
predictions (Dense) (None, 1000) 4097000 fc2[0][0]
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________
根據這個網站https://github.com/fchollet/keras/issues/3190,它說
Sequential(layers=functional_model.layers)
能隱蔽功能模型爲連續模型。但是,如果我這樣做:
model = Sequential(layers=VGG_model.layers)
model.summary()
它導致
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
____________________________________________________________________________________________________
block1_conv1 (Convolution2D) (None, 224, 224, 64) 1792 input_1[0][0]
input_1[0][0]
input_1[0][0]
____________________________________________________________________________________________________
block1_conv2 (Convolution2D) (None, 224, 224, 64) 36928 block1_conv1[0][0]
block1_conv1[1][0]
block1_conv1[2][0]
____________________________________________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 block1_conv2[0][0]
block1_conv2[1][0]
block1_conv2[2][0]
____________________________________________________________________________________________________
block2_conv1 (Convolution2D) (None, 112, 112, 128) 73856 block1_pool[0][0]
block1_pool[1][0]
block1_pool[2][0]
____________________________________________________________________________________________________
block2_conv2 (Convolution2D) (None, 112, 112, 128) 147584 block2_conv1[0][0]
block2_conv1[1][0]
block2_conv1[2][0]
____________________________________________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 block2_conv2[0][0]
block2_conv2[1][0]
block2_conv2[2][0]
____________________________________________________________________________________________________
block3_conv1 (Convolution2D) (None, 56, 56, 256) 295168 block2_pool[0][0]
block2_pool[1][0]
block2_pool[2][0]
____________________________________________________________________________________________________
block3_conv2 (Convolution2D) (None, 56, 56, 256) 590080 block3_conv1[0][0]
block3_conv1[1][0]
block3_conv1[2][0]
____________________________________________________________________________________________________
block3_conv3 (Convolution2D) (None, 56, 56, 256) 590080 block3_conv2[0][0]
block3_conv2[1][0]
block3_conv2[2][0]
____________________________________________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 block3_conv3[0][0]
block3_conv3[1][0]
block3_conv3[2][0]
____________________________________________________________________________________________________
block4_conv1 (Convolution2D) (None, 28, 28, 512) 1180160 block3_pool[0][0]
block3_pool[1][0]
block3_pool[2][0]
____________________________________________________________________________________________________
block4_conv2 (Convolution2D) (None, 28, 28, 512) 2359808 block4_conv1[0][0]
block4_conv1[1][0]
block4_conv1[2][0]
____________________________________________________________________________________________________
block4_conv3 (Convolution2D) (None, 28, 28, 512) 2359808 block4_conv2[0][0]
block4_conv2[1][0]
block4_conv2[2][0]
____________________________________________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 block4_conv3[0][0]
block4_conv3[1][0]
block4_conv3[2][0]
____________________________________________________________________________________________________
block5_conv1 (Convolution2D) (None, 14, 14, 512) 2359808 block4_pool[0][0]
block4_pool[1][0]
block4_pool[2][0]
____________________________________________________________________________________________________
block5_conv2 (Convolution2D) (None, 14, 14, 512) 2359808 block5_conv1[0][0]
block5_conv1[1][0]
block5_conv1[2][0]
____________________________________________________________________________________________________
block5_conv3 (Convolution2D) (None, 14, 14, 512) 2359808 block5_conv2[0][0]
block5_conv2[1][0]
block5_conv2[2][0]
____________________________________________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 block5_conv3[0][0]
block5_conv3[1][0]
block5_conv3[2][0]
____________________________________________________________________________________________________
flatten (Flatten) (None, 25088) 0 block5_pool[0][0]
block5_pool[1][0]
block5_pool[2][0]
____________________________________________________________________________________________________
fc1 (Dense) (None, 4096) 102764544 flatten[0][0]
flatten[1][0]
flatten[2][0]
____________________________________________________________________________________________________
fc2 (Dense) (None, 4096) 16781312 fc1[0][0]
fc1[1][0]
fc1[2][0]
____________________________________________________________________________________________________
predictions (Dense) (None, 1000) 4097000 fc2[0][0]
fc2[1][0]
fc2[2][0]
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_
這是因爲新的層連接到先前層3倍的原始功能模型不同。人們說使用功能模型更強大。但我想要做的只是彈出最終預測層。和功能模型不能做到這一點...
爲什麼你需要一個順序模型? –