我正在嘗試編寫生成決策樹的ID3算法,但運行我的代碼時出現StackOverflowError錯誤。 當調試時,我注意到循環開始時,屬性下降到4(從最初9)。 樹生成的代碼如下。我打電話的所有功能都正常工作,它們已經過測試。 但是,錯誤代碼指出問題出在另一個使用流的函數上,但它已經單獨測試了 ,我知道它正常工作。請記住,我正在處理隨機數據,因此該函數有時會拋出錯誤,有時不會。我在其下面發佈了錯誤代碼,但熵函數和信息增益工作。StackOverflowError決策樹生成JAVA
這是樹節點結構:
public class TreeNode {
List<Patient> samples;
List<TreeNode> children;
TreeNode parent;
Integer attribute;
String attributeValue;
String className;
public TreeNode(List<Patient> samples, List<TreeNode> children, TreeNode parent, Integer attribute,
String attributeValue, String className) {
this.samples = samples;
this.children = children;
this.parent = parent;
this.attribute = attribute;
this.attributeValue = attributeValue;
this.className = className;
}
}
這就是拋出錯誤代碼:
public TreeNode id3(List<Patient> patients, List<Integer> attributes, TreeNode root) {
boolean isLeaf = patients.stream().collect(Collectors.groupingBy(i -> i.className)).keySet().size() == 1;
if (isLeaf) {
root.setClassName(patients.get(0).className);
return root;
}
if (attributes.size() == 0) {
root.setClassName(mostCommonClass(patients));
return root;
}
int bestAttribute = maxInformationGainAttribute(patients, attributes);
Set<String> attributeValues = attributeValues(patients, bestAttribute);
for (String value : attributeValues) {
List<Patient> branch = patients.stream().filter(i -> i.patientData[bestAttribute].equals(value))
.collect(Collectors.toList());
TreeNode child = new TreeNode(branch, new ArrayList<>(), root, bestAttribute, value, null);
if (branch.isEmpty()) {
child.setClassName(mostCommonClass(patients));
root.addChild(new TreeNode(child));
} else {
List<Integer> newAttributes = new ArrayList<>();
newAttributes.addAll(attributes);
newAttributes.remove(new Integer(bestAttribute));
root.addChild(new TreeNode(id3(branch, newAttributes, child)));
}
}
return root;
}
這些都是其他功能:
public static double entropy(List<Patient> patients) {
double entropy = 0.0;
double recurP = (double) patients.stream().filter(i -> i.className.equals("recurrence-events")).count()
/(double) patients.size();
double noRecurP = (double) patients.stream().filter(i -> i.className.equals("no-recurrence-events")).count()
/(double) patients.size();
entropy -= (recurP * (recurP > 0 ? Math.log(recurP) : 0/Math.log(2))
+ noRecurP * (noRecurP > 0 ? Math.log(noRecurP) : 0/Math.log(2)));
return entropy;
}
public static double informationGain(List<Patient> patients, int attribute) {
double informationGain = entropy(patients);
Map<String, List<Patient>> patientsGroupedByAttribute = patients.stream()
.collect(Collectors.groupingBy(i -> i.patientData[attribute]));
List<List<Patient>> subsets = new ArrayList<>();
for (String i : patientsGroupedByAttribute.keySet()) {
subsets.add(patientsGroupedByAttribute.get(i));
}
for (List<Patient> lp : subsets) {
informationGain -= proportion(lp, patients) * entropy(lp);
}
return informationGain;
}
private static int maxInformationGainAttribute(List<Patient> patients, List<Integer> attributes) {
int maxAttribute = 0;
double maxInformationGain = 0;
for (int i : attributes) {
if (informationGain(patients, i) > maxInformationGain) {
maxAttribute = i;
maxInformationGain = informationGain(patients, i);
}
}
return maxAttribute;
}
例外:
Exception in thread "main" java.lang.StackOverflowError
at java.util.stream.ReferencePipeline$2$1.accept(Unknown Source)
at java.util.ArrayList$ArrayListSpliterator.forEachRemaining(Unknown Source)
at java.util.stream.AbstractPipeline.copyInto(Unknown Source)
at java.util.stream.AbstractPipeline.wrapAndCopyInto(Unknown Source)
at java.util.stream.ReduceOps$ReduceOp.evaluateSequential(Unknown Source)
at java.util.stream.AbstractPipeline.evaluate(Unknown Source)
at java.util.stream.LongPipeline.reduce(Unknown Source)
at java.util.stream.LongPipeline.sum(Unknown Source)
at java.util.stream.ReferencePipeline.count(Unknown Source)
at Patient.entropy(Patient.java:39)
at Patient.informationGain(Patient.java:67)
at Patient.maxInformationGainAttribute(Patient.java:85)
at Patient.id3(Patient.java:109)
我一直在一遍又一遍的調試它,它的工作原理直到屬性降到4,這是奇怪的部分。當屬性下降到4時,它開始回退一步,並再次向前走。但它直到那時才生成適當的樹。 :( – vixenn
我會看看兩種方法, maxInformationGainAttribute(患者,屬性); 和 attributeValues(patients,bestAttribute); ,並確保它們返回您所期望的值,以防止它卡住。 –
確保maxInformationGainAttribute(patients,attributes);正在做它應該做的事情,因爲如果它不修改屬性列表,那麼您將在此行傳遞相同的值: newAttributes.addAll(attributes); –