0
上
我已經成功地培養了Keras模型對13" 的MacBook Pro與Theano,儘管速度較慢,但我當培養具有相同的數據完全相同的模型更強大的計算機(32 GB RAM,8 GB的Nvidia Quadro圖形,8個CPU內核)與TensorFlow在Ubuntu上,會出現以下錯誤:Keras/Tensorflow:對MBP 13" 個培訓成功與Theano,但拋出ResourceExhaustedError功能強大的計算機與TensorFlow
這裏被劇本,我使用:
from keras import backend as K
from keras.callbacks import Callback
from keras.constraints import maxnorm
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Convolution3D
from keras.layers.convolutional import MaxPooling3D
from keras.optimizers import Nadam
from keras.preprocessing.image import random_rotation, random_shift, random_shear, random_zoom
from keras.utils import np_utils
from keras.utils.io_utils import HDF5Matrix
from pprint import pprint
from random import shuffle
from sklearn.utils import shuffle
K.set_image_dim_ordering("th")
import cv2
import h5py
import json
import os
import sys
import numpy as np
class OpticalSpeechRecognizer(object):
def __init__(self, rows, columns, frames_per_sequence, samples_generated_per_sample, config_file, training_save_fn, osr_save_fn):
self.rows = rows
self.columns = columns
self.frames_per_sequence = frames_per_sequence
self.samples_generated_per_sample = samples_generated_per_sample
self.config_file = config_file
self.training_save_fn = training_save_fn
self.osr_save_fn = osr_save_fn
self.osr = None
def save_osr_model(self):
""" Save the OSR model to an HDF5 file
"""
# delete file if it already exists
try:
print "Saved file \"{0}\" already exists! Overwriting previous saved file.\n".format(self.osr_save_fn)
os.remove(self.osr_save_fn)
except OSError:
pass
print "Saving OSR model to \"{0}\"".format(self.osr_save_fn)
self.osr.save(self.osr_save_fn)
def load_osr_model(self):
""" Load the OSR model from an HDF5 file
"""
print "Loading OSR model from \"{0}\"".format(self.osr_save_fn)
self.osr = load_model(self.osr_save_fn)
def train_osr_model(self):
""" Train the optical speech recognizer
"""
print "\nTraining OSR"
validation_ratio = 0.3
batch_size = 25
training_sequence_generator = self.generate_training_sequences(batch_size=batch_size)
validation_sequence_generator = self.generate_training_sequences(batch_size=batch_size, validation_ratio=validation_ratio)
with h5py.File(self.training_save_fn, "r") as training_save_file:
sample_count = training_save_file.attrs["sample_count"]
pbi = ProgressDisplay()
self.osr.fit_generator(generator=training_sequence_generator,
validation_data=validation_sequence_generator,
samples_per_epoch=sample_count,
nb_val_samples=int(round(validation_ratio*sample_count)),
nb_epoch=10,
max_q_size=1,
verbose=2,
callbacks=[pbi],
class_weight=None,
nb_worker=1)
def generate_training_sequences(self, batch_size, validation_ratio=0):
""" Generates training sequences from HDF5 file on demand
"""
while True:
with h5py.File(self.training_save_fn, "r") as training_save_file:
sample_count = int(training_save_file.attrs["sample_count"])
sample_idxs = range(0, sample_count)
shuffle(sample_idxs)
training_sample_idxs = sample_idxs[0:int((1-validation_ratio)*sample_count)]
validation_sample_idxs = sample_idxs[int((1-validation_ratio)*sample_count):]
# generate sequences for validation
if validation_ratio:
validation_sample_count = len(validation_sample_idxs)
batches = int(validation_sample_count/batch_size)
remainder_samples = validation_sample_count%batch_size
# generate batches of samples
for idx in xrange(0, batches):
X = training_save_file["X"][validation_sample_idxs[idx*batch_size:idx*batch_size+batch_size]]
Y = training_save_file["Y"][validation_sample_idxs[idx*batch_size:idx*batch_size+batch_size]]
yield (X, Y)
# send remainder samples as one batch, if there are any
if remainder_samples:
X = training_save_file["X"][validation_sample_idxs[-remainder_samples:]]
Y = training_save_file["Y"][validation_sample_idxs[-remainder_samples:]]
yield (X, Y)
# generate sequences for training
else:
training_sample_count = len(training_sample_idxs)
batches = int(training_sample_count/batch_size)
remainder_samples = training_sample_count%batch_size
# generate batches of samples
for idx in xrange(0, batches):
X = training_save_file["X"][training_sample_idxs[idx*batch_size:idx*batch_size+batch_size]]
Y = training_save_file["Y"][training_sample_idxs[idx*batch_size:idx*batch_size+batch_size]]
yield (X, Y)
# send remainder samples as one batch, if there are any
if remainder_samples:
X = training_save_file["X"][training_sample_idxs[-remainder_samples:]]
Y = training_save_file["Y"][training_sample_idxs[-remainder_samples:]]
yield (X, Y)
def print_osr_summary(self):
""" Prints a summary representation of the OSR model
"""
print "\n*** MODEL SUMMARY ***"
self.osr.summary()
def generate_osr_model(self):
""" Builds the optical speech recognizer model
"""
print "".join(["\nGenerating OSR model\n",
"-"*40])
with h5py.File(self.training_save_fn, "r") as training_save_file:
class_count = len(training_save_file.attrs["training_classes"].split(","))
osr = Sequential()
print " - Adding convolution layers"
osr.add(Convolution3D(nb_filter=32,
kernel_dim1=3,
kernel_dim2=3,
kernel_dim3=3,
border_mode="same",
input_shape=(1, self.frames_per_sequence, self.rows, self.columns),
activation="relu"))
osr.add(MaxPooling3D(pool_size=(3, 3, 3)))
osr.add(Convolution3D(nb_filter=64,
kernel_dim1=3,
kernel_dim2=3,
kernel_dim3=3,
border_mode="same",
activation="relu"))
osr.add(MaxPooling3D(pool_size=(3, 3, 3)))
osr.add(Convolution3D(nb_filter=128,
kernel_dim1=3,
kernel_dim2=3,
kernel_dim3=3,
border_mode="same",
activation="relu"))
osr.add(MaxPooling3D(pool_size=(3, 3, 3)))
osr.add(Dropout(0.2))
osr.add(Flatten())
print " - Adding fully connected layers"
osr.add(Dense(output_dim=128,
init="normal",
activation="relu"))
osr.add(Dense(output_dim=128,
init="normal",
activation="relu"))
osr.add(Dense(output_dim=128,
init="normal",
activation="relu"))
osr.add(Dropout(0.2))
osr.add(Dense(output_dim=class_count,
init="normal",
activation="softmax"))
print " - Compiling model"
optimizer = Nadam(lr=0.002,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-08,
schedule_decay=0.004)
osr.compile(loss="categorical_crossentropy",
optimizer=optimizer,
metrics=["categorical_accuracy"])
self.osr = osr
print " * OSR MODEL GENERATED * "
def process_training_data(self):
""" Preprocesses training data and saves them into an HDF5 file
"""
# load training metadata from config file
training_metadata = {}
training_classes = []
with open(self.config_file) as training_config:
training_metadata = json.load(training_config)
training_classes = sorted(list(training_metadata.keys()))
print "".join(["\n",
"Found {0} training classes!\n".format(len(training_classes)),
"-"*40])
for class_label, training_class in enumerate(training_classes):
print "{0:<4d} {1:<10s} {2:<30s}".format(class_label, training_class, training_metadata[training_class])
print ""
# count number of samples
sample_count = 0
sample_count_by_class = [0]*len(training_classes)
for class_label, training_class in enumerate(training_classes):
# get training class sequeunce paths
training_class_data_path = training_metadata[training_class]
training_class_sequence_paths = [os.path.join(training_class_data_path, file_name)
for file_name in os.listdir(training_class_data_path)
if (os.path.isfile(os.path.join(training_class_data_path, file_name))
and ".mov" in file_name)]
# update sample count
sample_count += len(training_class_sequence_paths)
sample_count_by_class[class_label] = len(training_class_sequence_paths)
print "".join(["\n",
"Found {0} training samples!\n".format(sample_count),
"-"*40])
for class_label, training_class in enumerate(training_classes):
print "{0:<4d} {1:<10s} {2:<6d}".format(class_label, training_class, sample_count_by_class[class_label])
print ""
# initialize HDF5 save file, but clear older duplicate first if it exists
try:
print "Saved file \"{0}\" already exists! Overwriting previous saved file.\n".format(self.training_save_fn)
os.remove(self.training_save_fn)
except OSError:
pass
# process and save training data into HDF5 file
print "Generating {0} samples from {1} samples via data augmentation\n".format(sample_count*self.samples_generated_per_sample,
sample_count)
sample_count = sample_count*self.samples_generated_per_sample
with h5py.File(self.training_save_fn, "w") as training_save_file:
training_save_file.attrs["training_classes"] = np.string_(",".join(training_classes))
training_save_file.attrs["sample_count"] = sample_count
x_training_dataset = training_save_file.create_dataset("X",
shape=(sample_count, 1, self.frames_per_sequence, self.rows, self.columns),
dtype="f")
y_training_dataset = training_save_file.create_dataset("Y",
shape=(sample_count, len(training_classes)),
dtype="i")
# iterate through each class data
sample_idx = 0
for class_label, training_class in enumerate(training_classes):
# get training class sequeunce paths
training_class_data_path = training_metadata[training_class]
training_class_sequence_paths = [os.path.join(training_class_data_path, file_name)
for file_name in os.listdir(training_class_data_path)
if (os.path.isfile(os.path.join(training_class_data_path, file_name))
and ".mov" in file_name)]
# iterate through each sequence
for idx, training_class_sequence_path in enumerate(training_class_sequence_paths):
sys.stdout.write("Processing training data for class \"{0}\": {1}/{2} sequences\r"
.format(training_class, idx+1, len(training_class_sequence_paths)))
sys.stdout.flush()
# accumulate samples and labels
samples_batch = self.process_frames(training_class_sequence_path)
label = [0]*len(training_classes)
label[class_label] = 1
for sample in samples_batch:
x_training_dataset[sample_idx] = sample
y_training_dataset[sample_idx] = label
# update sample index
sample_idx += 1
print "\n"
training_save_file.close()
print "Training data processed and saved to {0}".format(self.training_save_fn)
def process_frames(self, video_file_path):
""" Preprocesses sequence frames
"""
# haar cascades for localizing oral region
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
mouth_cascade = cv2.CascadeClassifier('haarcascade_mcs_mouth.xml')
video = cv2.VideoCapture(video_file_path)
success, frame = video.read()
frames = []
success = True
# convert to grayscale, localize oral region, equalize frame dimensions, and accumulate valid frames
while success:
success, frame = video.read()
if success:
# convert to grayscale
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# localize single facial region
faces_coords = face_cascade.detectMultiScale(frame, 1.3, 5)
if len(faces_coords) == 1:
face_x, face_y, face_w, face_h = faces_coords[0]
frame = frame[face_y:face_y + face_h, face_x:face_x + face_w]
# localize oral region
mouth_coords = mouth_cascade.detectMultiScale(frame, 1.3, 5)
threshold = 0
for (mouth_x, mouth_y, mouth_w, mouth_h) in mouth_coords:
if (mouth_y > threshold):
threshold = mouth_y
valid_mouth_coords = (mouth_x, mouth_y, mouth_w, mouth_h)
else:
pass
mouth_x, mouth_y, mouth_w, mouth_h = valid_mouth_coords
frame = frame[mouth_y:mouth_y + mouth_h, mouth_x:mouth_x + mouth_w]
# equalize frame dimensions
frame = cv2.resize(frame, (self.columns, self.rows)).astype('float32')
# accumulate frames
frames.append(frame)
# ignore multiple facial region detections
else:
pass
# equalize sequence lengths
if len(frames) < self.frames_per_sequence:
frames = [frames[0]]*(self.frames_per_sequence - len(frames)) + frames
frames = np.asarray(frames[0:self.frames_per_sequence])
# pixel normalizer
pix_norm = lambda frame: frame/255.0
samples_batch = [[map(pix_norm, frames)]]
# random transformations for data augmentation
for _ in xrange(0, self.samples_generated_per_sample-1):
rotated_frames = random_rotation(frames, rg=45)
shifted_frames = random_shift(rotated_frames, wrg=0.25, hrg=0.25)
sheared_frames = random_shear(shifted_frames, intensity=0.79)
zoomed_frames = random_zoom(sheared_frames, zoom_range=(1.25, 1.25))
samples_batch.append([map(pix_norm, zoomed_frames)])
return samples_batch
class ProgressDisplay(Callback):
""" Progress display callback
"""
def on_batch_end(self, epoch, logs={}):
print " Batch {0:<4d} => Accuracy: {1:>8.4f} | Loss: {2:>8.4f} | Size: {3:>4d}".format(int(logs["batch"])+1,
float(logs["categorical_accuracy"]),
float(logs["loss"]),
int(logs["size"]))
if __name__ == "__main__":
# Example usage
osr = OpticalSpeechRecognizer(rows=100,
columns=150,
frames_per_sequence=45,
samples_generated_per_sample=10,
config_file="training_config.json",
training_save_fn="training_data.h5",
osr_save_fn="osr_model.h5")
osr.process_training_data()
osr.generate_osr_model()
osr.print_osr_summary()
osr.train_osr_model()
osr.save_osr_model()
osr.load_osr_model()
資源耗盡可能與耗盡文件描述符有關。這可以在'/ etc/sysctl.conf'或'/ etc/security/limits.conf'中修改。如果合適,您可以嘗試以root身份運行以進行快速檢查。 – drpng
@drpng你可以用一個例子來說明一下嗎? –