3
我正在嘗試使用反向傳播實現多層感知器,但我仍然不能教他XOR,我也經常會遇到數學範圍錯誤。我看了書和谷歌學習規則和誤差反向傳播方法,但我仍然不知道哪裏是我的錯誤蟒蛇 - 多層感知器,反向傳播,無法學習XOR
def logsig(net):
return 1/(1+math.exp(-net))
def perceptron(coef = 0.5, iterations = 10000):
inputs = [[0,0],[0,1],[1,0],[1,1]]
desiredOuts = [0,1,1,0]
bias = -1
[input.append(bias) for input in inputs]
weights_h1 = [random.random() for e in range(len(inputs[0]))]
weights_h2 = [random.random() for e in range(len(inputs[0]))]
weights_out = [random.random() for e in range(3)]
for itteration in range(iterations):
out = []
for input, desiredOut in zip(inputs, desiredOuts):
#1st hiden neuron
net_h1 = sum(x * w for x, w in zip(input, weights_h1))
aktivation_h1 = logsig(net_h1)
#2st hiden neuron
net_h2 = sum(x * w for x, w in zip(input, weights_h2))
aktivation_h2 = logsig(net_h2)
#output neuron
input_out = [aktivation_h1, aktivation_h2, bias]
net_out = sum(x * w for x, w in zip(input_out, weights_out))
aktivation_out = logsig(net_out)
#error propagation
error_out = (desiredOut - aktivation_out) * aktivation_out * (1- aktivation_out)
error_h1 = aktivation_h1 * (1-aktivation_h1) * weights_out[0] * error_out
error_h2 = aktivation_h2 * (1-aktivation_h2) * weights_out[1] * error_out
#learning
weights_out = [w + x * coef * error_out for w, x in zip(weights_out, input_out)]
weights_h1 = [w + x * coef * error_out for w, x in zip(weights_h1, input)]
weights_h2 = [w + x * coef * error_out for w, x in zip(weights_h2, input)]
out.append(aktivation_out)
formatedOutput = ["%.2f" % e for e in out]
return formatedOutput
是的,就是這樣。非常感謝 – user2173836 2013-03-15 12:48:04