這裏是E
的矢量化版本。它取代了for-loop
和標量運算與NumPy broadcasting和基於陣列的算術:
def alt_E(x):
x = x[:, None]
z = pi * (np.exp(-lamb) * (lamb**x))/special.factorial(x)
denom = z.sum(axis=1)[:, None]
z /= denom
return z
我跑em.py獲得意義的x
,lamb
,pi
,n
和k
的典型大小。在這種規模的數據, alt_E
約120倍比E
快:
In [32]: %timeit E(x)
100 loops, best of 3: 11.5 ms per loop
In [33]: %timeit alt_E(x)
10000 loops, best of 3: 94.7 µs per loop
In [34]: 11500/94.7
Out[34]: 121.43611404435057
這是我使用的基準設置:
import math
import numpy as np
import scipy.special as special
def alt_E(x):
x = x[:, None]
z = pi * (np.exp(-lamb) * (lamb**x))/special.factorial(x)
denom = z.sum(axis=1)[:, None]
z /= denom
return z
def E(x):
z = np.zeros((n, k))
for i in range(n):
v = pi * (1/math.factorial(x[i])) * \
np.exp(-1 * lamb) * (lamb ** x[i])
numerator = np.sum(v)
c = v/numerator
z[i, :] = c
return z
n = 576
k = 2
x = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5])
lamb = np.array([ 0.84835141, 1.04025989])
pi = np.array([ 0.5806958, 0.4193042])
assert np.allclose(alt_E(x), E(x))
順便說一句,E
也可以使用scipy.stats.poisson
來計算:
import scipy.stats as stats
pois = stats.poisson(mu=lamb)
def alt_E2(x):
z = pi * pois.pmf(x[:,None])
denom = z.sum(axis=1)[:, None]
z /= denom
return z
但這並不變成是更快,至少對於這個長度的數組:
In [33]: %timeit alt_E(x)
10000 loops, best of 3: 94.7 µs per loop
In [102]: %timeit alt_E2(x)
1000 loops, best of 3: 278 µs per loop
對於較大x
,alt_E2
更快:
In [104]: x = np.random.random(10000)
In [106]: %timeit alt_E(x)
100 loops, best of 3: 2.18 ms per loop
In [105]: %timeit alt_E2(x)
1000 loops, best of 3: 643 µs per loop
添加最少的樣品情況? – Divakar
@Divakar感謝評論。可以使用[This gist](https://gist.github.com/hkalexling/8b97806017cb7cd4ad4937ec1deb157b)作爲示例(python3)。一個EM算法被實現,並且我想向量化E(x)函數。 –
是否「羊肉」不變? – percusse