2016-04-24 95 views
2

我想要做什麼: 我想在兩個類上訓練cifar10數據集上的卷積神經網絡。然後,一旦我得到我的擬合模型,我想要採取所有的圖層和重現輸入圖像。所以我想從網絡中取回圖像而不是分類。Keras - 訓練卷積網絡,獲得自動編碼器輸出

我迄今所做的:

def copy_freeze_model(model, nlayers = 1): 
    new_model = Sequential() 
    for l in model.layers[:nlayers]: 
     l.trainable = False 
     new_model.add(l) 
    return new_model 

numClasses = 2 
(X_train, Y_train, X_test, Y_test) = load_data(numClasses) 
#Part 1 
rms = RMSprop() 
model = Sequential() 
#input shape: channels, rows, columns 
model.add(Convolution2D(32, 3, 3, border_mode='same', 
         input_shape=(3, 32, 32))) 
model.add(Activation("relu")) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.5)) 

model.add(Flatten()) 
model.add(Dense(512)) 
model.add(Activation("relu")) 
model.add(Dropout(0.5)) 
#output layer 
model.add(Dense(numClasses)) 
model.add(Activation('softmax')) 
model.compile(loss='categorical_crossentropy', optimizer=rms,metrics=["accuracy"]) 

model.fit(X_train,Y_train, batch_size=32, nb_epoch=25, 
      verbose=1, validation_split=0.2, 
      callbacks=[EarlyStopping(monitor='val_loss', patience=2)]) 
print('Classifcation rate %02.3f' % model.evaluate(X_test, Y_test)[1]) 

##pull the layers and try to get an output from the network that is image. 

newModel = copy_freeze_model(model, nlayers = 8) 
newModel.add(Dense(1024)) 

newModel.compile(loss='mean_squared_error', optimizer=rms,metrics=["accuracy"]) 
newModel.fit(X_train,X_train, batch_size=32, nb_epoch=25, 
      verbose=1, validation_split=0.2, 
      callbacks=[EarlyStopping(monitor='val_loss', patience=2)]) 
preds = newModel.predict(X_test) 

而且當我這樣做:

input_shape=(3, 32, 32) 

這是否意味着一個3通道(RGB)32×32的圖像?

+0

我認爲這可能不是通過noconvolutional層再現卷積變換圖像的最佳想法。 –

+0

@marcin你建議我做什麼? – Kevin

回答

相關問題