我正在研究使用theano庫進行深度學習的主要概念。我正在嘗試運行本教程中出現的這段代碼。這段代碼運行幾個小時。我應該如何保存計算後的模型以備後用?以及我應該如何加載它?深度學習:如何保存計算模型以進行預測以及如何稍後加載
import cPickle
import gzip
import os
import sys
import time
import numpy
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv
from logistic_sgd import LogisticRegression, load_data
from mlp import HiddenLayer
class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
"""
assert image_shape[1] == filter_shape[1]
self.input = input
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = numpy.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width"/
# pooling size
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:])/
numpy.prod(poolsize))
# initialize weights with random weights
W_bound = numpy.sqrt(6./(fan_in + fan_out))
self.W = theano.shared(numpy.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),
borrow=True)
# the bias is a 1D tensor -- one bias per output feature map
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
# convolve input feature maps with filters
conv_out = conv.conv2d(input=input, filters=self.W,
filter_shape=filter_shape, image_shape=image_shape)
# downsample each feature map individually, using maxpooling
pooled_out = downsample.max_pool_2d(input=conv_out,
ds=poolsize, ignore_border=True)
# add the bias term. Since the bias is a vector (1D array), we first
# reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
# thus be broadcasted across mini-batches and feature map
# width & height
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
# store parameters of this layer
self.params = [self.W, self.b]
def evaluate_lenet5(learning_rate=0.1, n_epochs=200,
dataset='mnist.pkl.gz',
nkerns=[20, 50], batch_size=500):
""" Demonstrates lenet on MNIST dataset
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: string
:param dataset: path to the dataset used for training /testing (MNIST here)
:type nkerns: list of ints
:param nkerns: number of kernels on each layer
"""
rng = numpy.random.RandomState(23455)
datasets = load_data(dataset)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
n_valid_batches /= batch_size
n_test_batches /= batch_size
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
ishape = (28, 28) # this is the size of MNIST images
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
# Reshape matrix of rasterized images of shape (batch_size,28*28)
# to a 4D tensor, compatible with our LeNetConvPoolLayer
layer0_input = x.reshape((batch_size, 1, 28, 28))
# Construct the first convolutional pooling layer:
# filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
# maxpooling reduces this further to (24/2,24/2) = (12,12)
# 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
image_shape=(batch_size, 1, 28, 28),
filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2))
# Construct the second convolutional pooling layer
# filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
# maxpooling reduces this further to (8/2,8/2) = (4,4)
# 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
image_shape=(batch_size, nkerns[0], 12, 12),
filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2))
# the HiddenLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size,num_pixels) (i.e matrix of rasterized images).
# This will generate a matrix of shape (20,32*4*4) = (20,512)
layer2_input = layer1.output.flatten(2)
# construct a fully-connected sigmoidal layer
layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4,
n_out=500, activation=T.tanh)
# classify the values of the fully-connected sigmoidal layer
layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)
# the cost we minimize during training is the NLL of the model
cost = layer3.negative_log_likelihood(y)
# create a function to compute the mistakes that are made by the model
test_model = theano.function([index], layer3.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]})
validate_model = theano.function([index], layer3.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]})
# create a list of all model parameters to be fit by gradient descent
params = layer3.params + layer2.params + layer1.params + layer0.params
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# train_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates list by automatically looping over all
# (params[i],grads[i]) pairs.
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - learning_rate * grad_i))
train_model = theano.function([index], cost, updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]})
###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience/2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_params = None
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = time.clock()
epoch = 0
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
if iter % 100 == 0:
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index)
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches, \
this_validation_loss * 100.))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
#improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i in xrange(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of best '
'model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i,'\
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time)/60.))
if __name__ == '__main__':
evaluate_lenet5()
def experiment(state, channel):
evaluate_lenet5(state.learning_rate, dataset=state.dataset)
你試過酸洗過嗎?而且我不確定你的代碼在這種情況下會爲你的問題添加什麼... – Julien