2016-11-09 57 views
0

我試圖使用帶有1022圖像和1022多類標籤(每個標籤有14個類)的python在SVM中使用SVM進行圖像分類。在訓練SVM對圖像進行分類時設置具有序列錯誤的數組元素

mypath = 'path' 
k = listdir(mypath) 
images = np.empty((len(k)-1), dtype=object) 
resized_imgs = np.empty((len(k)-1),dtype=object) 
for n in range(0, len(k)-1): 
    images[n] = cv2.imread(join(mypath,k[n]),0) #Reading images in grayscale 
    resized_imgs[n] = cv2.resize(images[n],(32,32)) #Resizing images 
for i in range(0,len(k)-1): 
    a=resized_imgs[i].mean() 
    b=resized_imgs[i].std() 
    t=np.ndarray([32,32]) 
    t.fill(1) 
    t=t*a 
    resized_imgs[i]=(resized_imgs[i]-a)/b 
X_train = resized_imgs 

for i in range(len(k)-1): 
    X_train[i] = X_train[i].flatten().tolist() 

y_train = np.array(y_train) 
for i in range(len(k)-1): 
    y_train[i] = y_train[i].flatten().tolist() 

clf=svm.SVC(gamma=0.001) 
clf.fit(X_train,y_train) 

X_train y_train

現在,爲了這個,我遇到了錯誤:

--------------------------------------------------------------------------- 
ValueError        Traceback (most recent call last) 
<ipython-input-469-bfab446776df> in <module>() 
----> 1 clf.fit(X_train,y_train[:,0]) 

C:\Users\user\Anaconda3\lib\site-packages\sklearn\svm\base.py in fit(self, X, y, sample_weight) 
    148   self._sparse = sparse and not callable(self.kernel) 
    149 
--> 150   X = check_array(X, accept_sparse='csr', dtype=np.float64,  order='C') 
    151   y = self._validate_targets(y) 
    152 

C:\Users\user\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 
    371          force_all_finite) 
    372  else: 
--> 373   array = np.array(array, dtype=dtype, order=order, copy=copy) 
    374 
    375   if ensure_2d: 

ValueError: setting an array element with a sequence. 

我看不出這可能是由於X_train的數組,因爲尺寸不匹配X_train的每個元素是1024個標準化像素值的列表,並且y_train的每個元素對應於14個屬性的列表。

任何幫助,將不勝感激。謝謝!

回答

1

我想我要去哪裏錯了。事實證明,X_train的dtype是對象類型,所以我不得不將它改爲浮動。

用下面的代碼相同,

np.array(list(X_train), dtype=np.float) 
相關問題