我想使用SVM將查詢圖像與其適當的類匹配。現在這些類只是1或0.我從.txt文件中提取類並將其存儲到Mat中。我使用BoW爲訓練集中的每個圖像計算直方圖,並將其存儲到Mat中。SVM訓練錯誤(樣本類型斷言失敗)
Mat response_hist;
Mat histograms;
Mat classes;
ifstream ifs("train.txt");
int total_samples_in_file = 0;
vector<string> classes_names;
vector<string> lines;
for (int i = 1; i <= trainingSetSize; i++){
cout << "in for loop iteration"<< i << endl;
_snprintf_s(filepath, 100, "C:/Users/Randal/Desktop/TestCase1Training/train/%d.bmp", i);
Mat temp = imread(filepath, CV_LOAD_IMAGE_GRAYSCALE);
Mat tempBW;
adaptiveThreshold(temp, tempBW, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 11, 2);
detector->detect(tempBW, keypoints1);
BOW.compute(tempBW, keypoints1, response_hist);
response_hist.convertTo(response_hist, CV_32F);
histograms.push_back(response_hist);
}
//read from the file - ifs and put into a vector
std::string line;
float class_num;
string imgfilepath;
for (int j = 1; getline(ifs, line); j++)
{
istringstream ss(line);
ss >> imgfilepath >> class_num;
classes.push_back(class_num);
}
Mats class_num和直方圖用於訓練SVM。 「直方圖」中的每一行表示樣本(訓練集中圖像的直方圖)。 「class_num」是一行,每列是訓練集中相應圖像的類(1或0)。
Ptr<ml::SVM> svm = ml::SVM::create();
svm->setType(ml::SVM::C_SVC);
svm->setKernel(ml::SVM::POLY);
svm->setGamma(3);
Mat trainingDataMat(histograms);
Mat trainingDataClass(classes);
trainingDataMat.convertTo(trainingDataMat, CV_32F);
trainingDataMat = trainingDataMat.reshape(trainingDataMat.cols, 1);
trainingDataClass.convertTo(classes, CV_32F);
svm->train(trainingDataMat, ml::ROW_SAMPLE, trainingDataClass); //incorrect types? I think it is a problem with ROW_SAMPLE
Mat res; // output
svm->predict(output, res);
當我運行此我得到的錯誤 「斷言在CV ::毫升:: TrainDataImpl ::使用setData失敗(samples.type()== CV_32F || samples.type()== CV_32S)」 。但是,我已經放置了代碼行來將我的類Mat和我的直方圖Mat轉換爲類型CV_32F。我的輸入是問題還是與svm-> train中的ROW_SAMPLE有關?任何幫助是極大的讚賞。
謝謝
'reshape'參數是#1個通道數,#2個行數。所以這條線是錯誤的。可能你只需要評論這一行,因爲'trainingDataMat'的大小似乎已經很好 – Miki
刪除重整會導致行數錯誤。 「(assertion failed((layout == ROW_SAMPLE && response.rows == nsamples)||(layout == COL_SAMPLE && response.cols == nsamples))」 – Phazoozoo