我想解決一個在scipy.integrate中使用ode求解器的微分方程組。我的問題是,當我的矩陣不應該是單數時,我會得到「奇異矩陣」錯誤。主要問題是當我試圖在我的代碼中找到矩陣B的逆矩陣時。在下面的代碼中,B是3x3矩陣,A是3x1矩陣,U也是3x1矩陣! 我該如何解決這個問題?Python:numpy.linalg.linalg.LinAlgError:奇異矩陣
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import math
import parameter_projection as pp
from scipy.integrate import ode
import sympy as sm
c=10
k,k1,k2,k3=10,9,8,7
eta=2.5
gamma,gamma1,gamma2=2,3,10
a=[]
for i in range(30):
a.append(i)
a=np.array(a)
def aero(t,Y):
V,alpha,beta,p,q,r,phi,theta=Y[0],Y[1],Y[2],Y[3],Y[4],Y[5],Y[6],Y[7]
sg=np.cos(alpha)*np.cos(beta)*np.sin(theta)-np.sin(beta)*np.sin(phi)*np.cos(theta)-np.sin(alpha)*np.cos(beta)*np.cos(phi)*np.cos(theta)
smcg=np.cos(alpha)*np.sin(beta)*np.sin(theta)+np.cos(beta)*np.sin(phi)*np.cos(theta)-np.sin(alpha)*np.sin(beta)*np.cos(phi)*np.cos(theta)
cmcg=np.sin(theta)*np.sin(alpha)+np.cos(alpha)*np.cos(phi)*np.cos(theta)
#error
ev=V-np.sin(t)
ebeta=beta-np.sin(t)
etheta=theta-np.sin(t)
ethetad=q*np.cos(phi)-r*np.sin(phi)-np.cos(t)
sv,sbeta,stheta=ev,ebeta,etheta+ethetad
s=np.array([[sv],[sbeta],[stheta]])
A=np.array([[-a[1]*V**2*np.sin(beta)-a[2]*V**2*np.sin(beta)-a[4]*np.sin(gamma)-np.cos(t)],[p*np.sin(alpha)-r*np.cos(alpha)+a[16]*V+a[15]*smcg-np.cos(t)],[ethetad+np.cos(phi)*a[10]*p*r+np.cos(phi)*a[6]*(r**2-p**2)+np.cos(phi)*a[20]*V**2-np.cos(phi)*a[21]*sg+-q*np.sin(phi)*p-q*np.sin(phi)*q*np.sin(phi)*np.tan(theta)-q*np.sin(phi)*r*np.cos(phi)*np.tan(theta)-np.sin(phi)*a[11]*p*q+a[12]*q*r-a[13]*V**2+r*np.cos(phi)*p+r*q*np.cos(phi)*np.sin(phi)*np.tan(theta)+(r*np.cos(phi))**2*np.tan(theta)-np.cos(t)]])
B=np.array([[a[0]*np.cos(alpha)*np.sin(beta),a[7]*np.sin(beta),a[0]*np.sin(alpha)*np.cos(beta)],[-a[9]*np.cos(alpha)*np.sin(beta)/V,a[22]*np.cos(beta)/V,-a[9]*np.sin(alpha)*np.sin(beta)/V],[a[29]*np.cos(phi),a[26]*np.sin(alpha)*np.sin(beta)*np.cos(phi)-a[27]*np.sin(phi)*np.cos(alpha),-a[25]*np.cos(phi)]])
C=np.linalg.inv(B)*A
U=(C-np.linalg.inv(B)*k*s-np.linalg.inv(B)*eta*np.tanh(s))
Vdot=a[0]*np.cos(alpha)*np.sin(beta)*U[0]-a[1]*V**2*np.cos(beta)-a[2]*V**2*np.sin(beta)-a[3]*sg+a[7]*np.sin(beta)*U[1]+a[0]*np.sin(alpha)*np.cos(beta)*U[2]
alphadot=q-(p*np.cos(alpha)+r*np.sin(alpha))*np.sin(beta)/np.cos(beta)+a[4]*V-a[14]*cmcg-a[8]*np.sin(alpha)*U[0]/V+a[8]*np.cos(alpha)*U[2]/V
betadot=p*np.sin(alpha)-r*np.cos(alpha)+a[16]*V+a[17]*smcg-a[9]*np.cos(alpha)*np.sin(beta)*U[0]/V+a[22]*np.cos(beta)*U[1]/V-a[9]*np.sin(alpha)*np.sin(beta)*U[2]/V
pdot=a[5]*q*r+a[17]*p*q+a[18]*V**2-a[19]*smcg+a[23]*U[0]-a[28]*U[2]+a[24]*np.sin(alpha)*np.cos(beta)*U[1]
qdot=a[10]*p*r+a[6]*(r**2-p**2)+a[20]*V**2-a[21]*sg+a[29]*U[0]-a[25]*U[2]+a[26]*np.sin(alpha)*np.sin(beta)*U[1]
rdot=a[11]*p*q-a[12]*q*r+a[13]*V**2+a[27]*np.cos(alpha)*U[2]
phidot=p+q*np.sin(phi)*np.tan(theta)+r*np.cos(phi)*np.tan(theta)
thetadot=q*np.cos(phi)-r*np.sin(phi)
return[Vdot,alphadot,betadot,pdot,qdot,rdot,phidot,thetadot]
y0=[0.01,0.2,0,0,0,0,0,0.1]
t0=0
V=[]
alpha=[]
beta=[]
p=[]
q=[]
r=[]
phi=[]
theta=[]
t=[]
r=ode(aero).set_integrator('dopri5',method='bdf',nsteps=1e10)
r.set_initial_value(y0,t0)
t1=10
dt=.01
while r.successful() and r.t<t1:
r.integrate(r.t+dt)
V.append(r.y[0])
alpha.append(r.y[1])
beta.append(r.y[2])
p.append(r.y[3])
q.append(r.y[4])
r.append(r.y[5])
phi.append(r.y[6])
theta.append(r.y[7])
t.append(r.t)
V=np.array(V)
alpha=np.array(alpha)
beta=np.array(beta)
p=np.array(p)
q=np.array(q)
r=np.array(r)
phi=np.array(phi)
theta=np.array(theta)
plt.plot(t,V)
plt.show()
嗨,我試過你的解決方案,我將解決方案名稱從r改爲s,但現在步長變得非常小。我仍然無法獲得圖表。 –
設置'dt = 1e-8',並繪製'alpha'來查看它的導數變爲無窮大,也就是說,'alpha'的行爲類似於'sqrt(t_sing-t)',奇點在't_sing = 4.50321260794985854e-06'。它不能立即看到是什麼推動了這種行爲。 – LutzL
嗨! LutzL其實在代碼中有一個錯誤,我將U的表達式改爲-C -np.linalg.solve(B,ks-etanp.tanh(s))。另外我認爲在k * s和eta * np.tanh(s)之間會有一個加號而不是減號。 但是現在運行代碼需要很長時間,實際上它運行了5-10分鐘! –