您也可以使用列表理解:
df.columns = ['_'.join(col) for col in df.columns]
print (df)
Winners_2016 Winners_2015 Winners_2014 Runnerup_2016 \
Country Sport
india badminton 1 1 1 1
wrestling 1 1 1 1
Runnerup_2015 Runnerup_2014
Country Sport
india badminton 1 1
wrestling 1 1
與轉換columns
to_series
然後另一種解決方案調用join
:
df.columns = df.columns.to_series().str.join('_')
print (df)
Winners_2016 Winners_2015 Winners_2014 Runnerup_2016 \
Country Sport
india badminton 1 1 1 1
wrestling 1 1 1 1
Runnerup_2015 Runnerup_2014
Country Sport
india badminton 1 1
wrestling 1 1
我正要定時真正感興趣的是:
In [45]: %timeit ['_'.join(col) for col in df.columns]
The slowest run took 7.82 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 4.05 µs per loop
In [44]: %timeit ['{}_{}'.format(x,y) for x,y in zip(df.columns.get_level_values(0),df.columns.get_level_values(1))]
The slowest run took 4.56 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 131 µs per loop
In [46]: %timeit df.columns.to_series().str.join('_')
The slowest run took 4.31 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 452 µs per loop
真的很感興趣 - 第一個列表的理解速度快了30倍。 – jezrael
是的,這是非常有用的,因爲我正在處理更大的數據集。謝謝! –