2017-07-10 78 views

回答

5

看來mat是包含形狀(1831, 21)Xy與形狀(1831, 1)的字典,和一些元數據。假設X是數據和y是同一標籤,可以用np.hstack水平堆疊它們,並將它們加載到大熊貓:

In [1755]: mat = scipy.io.loadmat('cardio.mat') 

In [1758]: cardio_df = pd.DataFrame(np.hstack((mat['X'], mat['y']))) 

In [1759]: cardio_df.head() 
Out[1759]: 
     0   1   2   3   4   5   6 \ 
0 0.004912 0.693191 -0.203640 0.595322 0.353190 -0.061401 -0.278295 
1 0.110729 -0.079903 -0.203640 1.268942 0.396246 -0.061401 -0.278295 
2 0.216546 -0.272445 -0.203640 1.050988 0.148753 -0.061401 -0.278295 
3 0.004912 0.727346 -0.203640 1.212171 -0.683598 -0.061401 -0.278295 
4 -0.100905 0.363595 1.321366 1.027120 0.141359 -0.061401 -0.278295 

In [1760]: cardio_df.shape 
Out[1760]: (1831, 22) 
+0

@COLDSPEED如何轉換爲陣列狀的形狀與=(N_SAMPLES次,n_features )? – KouchakYazdi

+0

@KouchakYazdi你的意思是,你想先重塑它? –

+0

@COLDSPEED如果我想要一個數組中的mat文件,比如shape =(n_samples,n_features)格式,該怎麼辦? (不是數據框) – KouchakYazdi