在scikit-learn 0.16和更高版本中,您可以使用multinomial
選項sklearn.linear_model.LogisticRegression
來訓練對數線性模型(又名MaxEnt分類器,多類邏輯迴歸)。目前multinomial
選項是由'lbfgs'和'newton-cg'求解器。
與虹膜數據集實施例(4個特徵,3類,150個樣品):
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model, datasets
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
# Import data
iris = datasets.load_iris()
X = iris.data # features
y_true = iris.target # labels
# Look at the size of the feature matrix and the label vector:
print('iris.data.shape: {0}'.format(iris.data.shape))
print('iris.target.shape: {0}\n'.format(iris.target.shape))
# Instantiate a MaxEnt model
logreg = linear_model.LogisticRegression(C=1e5, multi_class='multinomial', solver='lbfgs')
# Train the model
logreg.fit(X, y_true)
print('logreg.coef_: \n{0}\n'.format(logreg.coef_))
print('logreg.intercept_: \n{0}'.format(logreg.intercept_))
# Use the model to make predictions
y_pred = logreg.predict(X)
print('\ny_pred: \n{0}'.format(y_pred))
# Assess the quality of the predictions
print('\nconfusion_matrix(y_true, y_pred):\n{0}\n'.format(confusion_matrix(y_true, y_pred)))
print('classification_report(y_true, y_pred): \n{0}'.format(classification_report(y_true, y_pred)))
的multinomial
選項sklearn.linear_model.LogisticRegression
was introduced in version 0.16:
- 添加
multi_class="multinomial"
選項 :類:linear_model.LogisticRegression
實施Logistic 迴歸求解器,最小化交叉熵或多項式損失 而不是默認的One-vs-Rest設置。支持lbfgs
和 求解器。通過Lars Buitinck
_和Manoj Kumar
_。求解器選項 Simon Wu。