1
我是一個全新的機器學習,我理解反向傳播和遞歸神經網絡的概念,但我似乎無法通過時間來掌握反向傳播。在維基百科的僞碼,通過時間反向傳播,初學者的簡單解釋
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output
Unfold the network to contain k instances of f
do until stopping criteria is met:
x = the zero-magnitude vector;// x is the current context
for t from 0 to n - 1 // t is time. n is the length of the training sequence
Set the network inputs to x, a[t], a[t+1], ..., a[t+k-1]
p = forward-propagate the inputs over the whole unfolded network
e = y[t+k] - p; // error = target - prediction
Back-propagate the error, e, back across the whole unfolded network
Update all the weights in the network
Average the weights in each instance of f together, so that each f is identical
x = f(x); // compute the context for the next time-step
所以,按照我的理解,我們在當前步驟所需的輸出,我們向前傳遞前的步驟,計算前面的步驟輸出和電流輸出之間的誤差。
我們如何更新權重?
Average the weights in each instance of f together, so that each f is identical
這是什麼意思?
任何人都可以描述什麼BPTT是在簡單的條件給初學者一個簡單的參考?