1
這是一個K-最近鄰算法,適用於R n中的點,它應計算每個點與其k個最近鄰點的平均距離。問題在於,雖然它是矢量化的,但是我重複着自己的意義,它效率低下。我會很高興,如果有人可以幫助我提高這個代碼:Python中的矢量化平均K-最近鄰距離
import numpy as np
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
def nn_args_R_n_squared(points):
"""Calculate pairwise distances of points and return the matrix together with matrix of indices of the first matrix sorted"""
dist_mat=squareform(pdist(points,'sqeuclidean'))
return dist_mat,np.argsort(dist_mat,axis=1)
def knn_avg_dist(X,k):
"""Calculates for points in rows of X, the average distance of each, to their k-nearest neighbours"""
X_dist_mat,X_sorted_arg=nn_args_R_n_squared(X)
X_matrices=(X[X_sorted_arg[:,1:k+1]]-X[...,None,...]).astype(np.float64)
return np.mean(np.linalg.norm(X_matrices,axis=2)**2,axis=1)
X=np.random.randn(30).reshape((10,3))
print X
print knn_avg_dist(X,3)
輸出:
[[-1.87979713 0.02832699 0.18654558]
[ 0.95626677 0.4415187 -0.90220505]
[ 0.86210012 -0.88348927 0.32462922]
[ 0.42857316 1.66556448 -0.31829065]
[ 0.26475478 -1.6807253 -1.37694585]
[-0.08882175 -0.61925033 -1.77264525]
[-0.24085553 0.64426394 -0.01973027]
[-0.86926425 0.93439913 -0.31657442]
[-0.30987468 0.02925649 -1.38556347]
[-0.41801804 1.40210993 -1.04450895]]
[ 3.37983833 2.1257945 3.60884158 1.67051682 2.85013297 1.66756279
1.2678029 1.20491026 1.54623574 1.30722388]
正如你可以看到我計算距離的兩倍,但我無法想出一個辦法從X_dist_mat
讀取相同的信息,因爲我必須同時從每行讀取多個元素。
如果添加'import's和生成假數據給你的代碼,那麼可以複製並粘貼到一起來看看。否則,你應該能夠從'sklearn'現有的實現中獲得靈感。 – eickenberg