我正在學習Udacity深度學習課程,其作業說:「演示過度擬合的極端情況,將您的訓練數據限制在幾個批次。梯度下降批量步驟Tensorflow
我的問題是:
1) 爲什麼減少num_steps, num_batches
有什麼做過度擬合?我們沒有添加任何變量也沒有增加W的大小。
在下面的代碼中,num_steps曾經是3001,num_batches是128,解決方案是分別將它們減少到101和3。
num_steps = 101
num_bacthes = 3
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
#offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
offset = step % num_bacthes
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, beta_regul : 1e-3}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 2 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
此代碼是從溶液中的摘錄:https://github.com/rndbrtrnd/udacity-deep-learning/blob/master/3_regularization.ipynb
2)可有人解釋的梯度下降「偏移」概念?爲什麼我們必須使用它?
3)我已經用num_steps進行了實驗,發現如果增加num_steps,精度會提高。爲什麼?我應該如何解讀num_step和學習率?