我在matlab中爲多個變量做梯度下降,並且代碼沒有得到我用正常eq得到的預期理論值。即: theta = 1.0e + 05 * 3.4041 1.1063 -0.0665 隨着正常eq。我已經實施。matlab中的多變量梯度下降
並與GDM我得到的結果是: THETA = 1.0E + 05 * 2.6618 -2.6718 -0.5954 我不明白這是爲什麼,也許一些人可以幫我,告訴我在代碼中的錯誤在哪裏。
代碼:
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
thetas = size(theta,1);
features = size(X,2)
mu = mean(X);
sigma = std(X);
mu_size = size(mu);
sigma_size = size(sigma);
%for all iterations
for iter = 1:num_iters
tempo = [];
result = [];
theta_temp = [];
%for all the thetas
for t = 1:thetas
%all the examples
for examples = 1:m
tempo(examples) = ((theta' * X(examples, :)') - y(examples)) * X(m,t)
end
result(t) = sum(tempo)
tempo = 0;
end
%theta temp, store the temp
for c = 1:thetas
theta_temp(c) = theta(c) - alpha * (1/m) * result(c)
end
%simultaneous update
for j = 1:thetas
theta(j) = theta_temp(j)
end
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
theta
end
感謝。
編輯:數據。
X =
1.0000 0.1300 -0.2237
1.0000 -0.5042 -0.2237
1.0000 0.5025 -0.2237
1.0000 -0.7357 -1.5378
1.0000 1.2575 1.0904
1.0000 -0.0197 1.0904
1.0000 -0.5872 -0.2237
1.0000 -0.7219 -0.2237
1.0000 -0.7810 -0.2237
1.0000 -0.6376 -0.2237
1.0000 -0.0764 1.0904
1.0000 -0.0009 -0.2237
1.0000 -0.1393 -0.2237
1.0000 3.1173 2.4045
1.0000 -0.9220 -0.2237
1.0000 0.3766 1.0904
1.0000 -0.8565 -1.5378
1.0000 -0.9622 -0.2237
1.0000 0.7655 1.0904
1.0000 1.2965 1.0904
1.0000 -0.2940 -0.2237
1.0000 -0.1418 -1.5378
1.0000 -0.4992 -0.2237
1.0000 -0.0487 1.0904
1.0000 2.3774 -0.2237
1.0000 -1.1334 -0.2237
1.0000 -0.6829 -0.2237
1.0000 0.6610 -0.2237
1.0000 0.2508 -0.2237
1.0000 0.8007 -0.2237
1.0000 -0.2034 -1.5378
1.0000 -1.2592 -2.8519
1.0000 0.0495 1.0904
1.0000 1.4299 -0.2237
1.0000 -0.2387 1.0904
1.0000 -0.7093 -0.2237
1.0000 -0.9584 -0.2237
1.0000 0.1652 1.0904
1.0000 2.7864 1.0904
1.0000 0.2030 1.0904
1.0000 -0.4237 -1.5378
1.0000 0.2986 -0.2237
1.0000 0.7126 1.0904
1.0000 -1.0075 -0.2237
1.0000 -1.4454 -1.5378
1.0000 -0.1871 1.0904
1.0000 -1.0037 -0.2237
y =
399900
329900
369000
232000
539900
299900
314900
198999
212000
242500
239999
347000
329999
699900
259900
449900
299900
199900
499998
599000
252900
255000
242900
259900
573900
249900
464500
469000
475000
299900
349900
169900
314900
579900
285900
249900
229900
345000
549000
287000
368500
329900
314000
299000
179900
299900
239500
完整的數據集。
請附上您的數據。 – Daniel
哈確定沒有pb它是一個大文件。這就是爲什麼我沒有把它。 :) –
然後創建包含並且失敗的人工設置。這是尋求基於數據的問題的唯一有效方法。 – lejlot