3
我是新來theano,我有麻煩。 我試圖用theano來創建可用於迴歸任務(而不是分類任務) 閱讀大量教程後神經網絡,我得出的結論,我可以做到這一點通過創建一個輸出層,只是處理迴歸和prepand一個「正常的」神經網絡有幾個隱藏層。 (但那仍然是未來)。使用迴歸神經網絡(與Theano)
所以這是我的「模式」:
1 #!/usr/bin/env python
2
3 import numpy as np
4 import theano
5 import theano.tensor as T
6
7 class RegressionLayer(object):
8 """Class that represents the linear regression, will be the outputlayer
9 of the Network"""
10 def __init__(self, input, n_in, learning_rate):
11 self.n_in = n_in
12 self.learning_rate = learning_rate
13 self.input = input
14
15 self.weights = theano.shared(
16 value = np.zeros((n_in, 1), dtype = theano.config.floatX),
17 name = 'weights',
18 borrow = True
19 )
20
21 self.bias = theano.shared(
22 value = 0.0,
23 name = 'bias'
24 )
25
26 self.regression = T.dot(input, self.weights) + self.bias
27 self.params = [self.weights, self.bias]
28
29 def cost_function(self, y):
30 return (y - self.regression) ** 2
31
訓練模型作爲theano教程我試過如下:
In [5]: x = T.dmatrix('x')
In [6]: reg = r.RegressionLayer(x, 3, 0)
In [8]: y = theano.shared(value = 0.0, name = "y")
In [9]: cost = reg.cost_function(y)
In [10]: T.grad(cost=cost, wrt=reg.weights)
─────────────────────────────────────────────────────────────────────────────────────────────--------------------------------------------------------------------------- [77/1395]
TypeError Traceback (most recent call last)
<ipython-input-10-0326df05c03f> in <module>()
----> 1 T.grad(cost=cost, wrt=reg.weights)
/home/name/PythonENVs/Theano/local/lib/python2.7/site-packages/theano/gradient.pyc in grad(c
ost, wrt, consider_constant, disconnected_inputs, add_names, known_grads, return_disconnected
)
430
431 if cost is not None and cost.ndim != 0:
--> 432 raise TypeError("cost must be a scalar.")
433
434 if isinstance(wrt, set):
TypeError: cost must be a scalar.
我覺得我做了完全一樣的(只與數學,我需要),就像是在theanos迴歸教程(http://deeplearning.net/tutorial/logreg.html)來完成,但它不工作。那麼爲什麼我不能創建漸變?
爲什麼會26 self.regression = T.dot(input,self.weights)+ self.bias返回一個向量?我的意思是點積返回一個標量,偏差也是一個標量。 – Uzaku
啊,通常你會放入一批數據,所以'input'就是一個矩陣。 – eickenberg
好吧,謝謝:) – Uzaku