2012-04-20 214 views
1

我在我的Android應用程序中使用CannyEdgeDetector.java(http://www.tomgibara.com/computer-vision/canny-edge-detector)進行邊緣檢測。CannyEdgeDetector給位圖溢出溢出

因爲Android不支持BufferedImage庫,所以我不得不通過將其輸入和輸出更改爲Bitmaps而不是BufferedImages來「移植」到Android。

這對於比如說100x200像素的小圖像來說可以很好地工作。不幸的是,它會在follow()方法中爲任何更大的事物提供堆棧溢出。但我需要使用更大的圖片,可能是8百萬像素。

解決此問題的最佳方法是什麼?

原CannyEdgeDetector.java:http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java 礦:

public class CannyEdgeDetector { 

// statics 

private final static float GAUSSIAN_CUT_OFF = 0.005f; 
private final static float MAGNITUDE_SCALE = 10F; 
private final static float MAGNITUDE_LIMIT = 100F; 
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT); 

// fields 

private int height; 
private int width; 
private int picsize; 
private int[] data; 
private int[] magnitude; 
private Bitmap sourceImage; 
private Bitmap edgesImage; 

private float gaussianKernelRadius; 
private float lowThreshold; 
private float highThreshold; 
private int gaussianKernelWidth; 
private boolean contrastNormalized; 

private float[] xConv; 
private float[] yConv; 
private float[] xGradient; 
private float[] yGradient; 

// constructors 

/** 
* Constructs a new detector with default parameters. 
*/ 

public CannyEdgeDetector() { 
    lowThreshold = 2.5f; 
    highThreshold = 7.5f; 
    gaussianKernelRadius = 2f; 
    gaussianKernelWidth = 16; 
    contrastNormalized = false; 
} 

// accessors 

/** 
* The image that provides the luminance data used by this detector to 
* generate edges. 
* 
* @return the source image, or null 
*/ 

public Bitmap getSourceImage() { 
    return sourceImage; 
} 

/** 
* Specifies the image that will provide the luminance data in which edges 
* will be detected. A source image must be set before the process method 
* is called. 
* 
* @param image a source of luminance data 
*/ 

public void setSourceImage(Bitmap image) { 
    // Convert to RGB 
    sourceImage = image.copy(Bitmap.Config.ARGB_8888, true); 
    //sourceImage = image.copy(Bitmap.Config.ALPHA_8, true); 
} 

/** 
* Obtains an image containing the edges detected during the last call to 
* the process method. The buffered image is an opaque image of type 
* BufferedImage.TYPE_INT_ARGB in which edge pixels are white and all other 
* pixels are black. 
* 
* @return an image containing the detected edges, or null if the process 
* method has not yet been called. 
*/ 

public Bitmap getEdgesImage() { 
    return edgesImage; 
} 

/** 
* Sets the edges image. Calling this method will not change the operation 
* of the edge detector in any way. It is intended to provide a means by 
* which the memory referenced by the detector object may be reduced. 
* 
* @param edgesImage expected (though not required) to be null 
*/ 

public void setEdgesImage(Bitmap edgesImage) { 
    this.edgesImage = edgesImage; 
} 

/** 
* The low threshold for hysteresis. The default value is 2.5. 
* 
* @return the low hysteresis threshold 
*/ 

public float getLowThreshold() { 
    return lowThreshold; 
} 

/** 
* Sets the low threshold for hysteresis. Suitable values for this parameter 
* must be determined experimentally for each application. It is nonsensical 
* (though not prohibited) for this value to exceed the high threshold value. 
* 
* @param threshold a low hysteresis threshold 
*/ 

public void setLowThreshold(float threshold) { 
    if (threshold < 0) throw new IllegalArgumentException(); 
    lowThreshold = threshold; 
} 

/** 
* The high threshold for hysteresis. The default value is 7.5. 
* 
* @return the high hysteresis threshold 
*/ 

public float getHighThreshold() { 
    return highThreshold; 
} 

/** 
* Sets the high threshold for hysteresis. Suitable values for this 
* parameter must be determined experimentally for each application. It is 
* nonsensical (though not prohibited) for this value to be less than the 
* low threshold value. 
* 
* @param threshold a high hysteresis threshold 
*/ 

public void setHighThreshold(float threshold) { 
    if (threshold < 0) throw new IllegalArgumentException(); 
    highThreshold = threshold; 
} 

/** 
* The number of pixels across which the Gaussian kernel is applied. 
* The default value is 16. 
* 
* @return the radius of the convolution operation in pixels 
*/ 

public int getGaussianKernelWidth() { 
    return gaussianKernelWidth; 
} 

/** 
* The number of pixels across which the Gaussian kernel is applied. 
* This implementation will reduce the radius if the contribution of pixel 
* values is deemed negligable, so this is actually a maximum radius. 
* 
* @param gaussianKernelWidth a radius for the convolution operation in 
* pixels, at least 2. 
*/ 

public void setGaussianKernelWidth(int gaussianKernelWidth) { 
    if (gaussianKernelWidth < 2) throw new IllegalArgumentException(); 
    this.gaussianKernelWidth = gaussianKernelWidth; 
} 

/** 
* The radius of the Gaussian convolution kernel used to smooth the source 
* image prior to gradient calculation. The default value is 16. 
* 
* @return the Gaussian kernel radius in pixels 
*/ 

public float getGaussianKernelRadius() { 
    return gaussianKernelRadius; 
} 

/** 
* Sets the radius of the Gaussian convolution kernel used to smooth the 
* source image prior to gradient calculation. 
* 
* @return a Gaussian kernel radius in pixels, must exceed 0.1f. 
*/ 

public void setGaussianKernelRadius(float gaussianKernelRadius) { 
    if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException(); 
    this.gaussianKernelRadius = gaussianKernelRadius; 
} 

/** 
* Whether the luminance data extracted from the source image is normalized 
* by linearizing its histogram prior to edge extraction. The default value 
* is false. 
* 
* @return whether the contrast is normalized 
*/ 

public boolean isContrastNormalized() { 
    return contrastNormalized; 
} 

/** 
* Sets whether the contrast is normalized 
* @param contrastNormalized true if the contrast should be normalized, 
* false otherwise 
*/ 

public void setContrastNormalized(boolean contrastNormalized) { 
    this.contrastNormalized = contrastNormalized; 
} 

// methods 

public void process() { 
    width = sourceImage.getWidth(); 
    height = sourceImage.getHeight(); 
    picsize = width * height; 
    initArrays(); 
    readLuminance(); 
    if (contrastNormalized) normalizeContrast(); 
    computeGradients(gaussianKernelRadius, gaussianKernelWidth); 
    int low = Math.round(lowThreshold * MAGNITUDE_SCALE); 
    int high = Math.round(highThreshold * MAGNITUDE_SCALE); 
    performHysteresis(low, high); 
    thresholdEdges(); 
    writeEdges(data); 
} 

// private utility methods 

private void initArrays() { 
    if (data == null || picsize != data.length) { 
     data = new int[picsize]; 
     magnitude = new int[picsize]; 

     xConv = new float[picsize]; 
     yConv = new float[picsize]; 
     xGradient = new float[picsize]; 
     yGradient = new float[picsize]; 
    } 
} 

//NOTE: The elements of the method below (specifically the technique for 
//non-maximal suppression and the technique for gradient computation) 
//are derived from an implementation posted in the following forum (with the 
//clear intent of others using the code): 
// http://forum.java.sun.com/thread.jspa?threadID=546211&start=45&tstart=0 
//My code effectively mimics the algorithm exhibited above. 
//Since I don't know the providence of the code that was posted it is a 
//possibility (though I think a very remote one) that this code violates 
//someone's intellectual property rights. If this concerns you feel free to 
//contact me for an alternative, though less efficient, implementation. 

private void computeGradients(float kernelRadius, int kernelWidth) { 

    //generate the gaussian convolution masks 
    float kernel[] = new float[kernelWidth]; 
    float diffKernel[] = new float[kernelWidth]; 
    int kwidth; 
    for (kwidth = 0; kwidth < kernelWidth; kwidth++) { 
     float g1 = gaussian(kwidth, kernelRadius); 
     if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break; 
     float g2 = gaussian(kwidth - 0.5f, kernelRadius); 
     float g3 = gaussian(kwidth + 0.5f, kernelRadius); 
     kernel[kwidth] = (g1 + g2 + g3)/3f/(2f * (float) Math.PI * kernelRadius * kernelRadius); 
     diffKernel[kwidth] = g3 - g2; 
    } 

    int initX = kwidth - 1; 
    int maxX = width - (kwidth - 1); 
    int initY = width * (kwidth - 1); 
    int maxY = width * (height - (kwidth - 1)); 

    //perform convolution in x and y directions 
    for (int x = initX; x < maxX; x++) { 
     for (int y = initY; y < maxY; y += width) { 
      int index = x + y; 
      float sumX = data[index] * kernel[0]; 
      float sumY = sumX; 
      int xOffset = 1; 
      int yOffset = width; 
      for(; xOffset < kwidth ;) { 
       sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]); 
       sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]); 
       yOffset += width; 
       xOffset++; 
      } 

      yConv[index] = sumY; 
      xConv[index] = sumX; 
     } 

    } 

    for (int x = initX; x < maxX; x++) { 
     for (int y = initY; y < maxY; y += width) { 
      float sum = 0f; 
      int index = x + y; 
      for (int i = 1; i < kwidth; i++) 
       sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]); 

      xGradient[index] = sum; 
     } 

    } 

    for (int x = kwidth; x < width - kwidth; x++) { 
     for (int y = initY; y < maxY; y += width) { 
      float sum = 0.0f; 
      int index = x + y; 
      int yOffset = width; 
      for (int i = 1; i < kwidth; i++) { 
       sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]); 
       yOffset += width; 
      } 

      yGradient[index] = sum; 
     } 

    } 

    initX = kwidth; 
    maxX = width - kwidth; 
    initY = width * kwidth; 
    maxY = width * (height - kwidth); 
    for (int x = initX; x < maxX; x++) { 
     for (int y = initY; y < maxY; y += width) { 
      int index = x + y; 
      int indexN = index - width; 
      int indexS = index + width; 
      int indexW = index - 1; 
      int indexE = index + 1; 
      int indexNW = indexN - 1; 
      int indexNE = indexN + 1; 
      int indexSW = indexS - 1; 
      int indexSE = indexS + 1; 

      float xGrad = xGradient[index]; 
      float yGrad = yGradient[index]; 
      float gradMag = hypot(xGrad, yGrad); 

      //perform non-maximal supression 
      float nMag = hypot(xGradient[indexN], yGradient[indexN]); 
      float sMag = hypot(xGradient[indexS], yGradient[indexS]); 
      float wMag = hypot(xGradient[indexW], yGradient[indexW]); 
      float eMag = hypot(xGradient[indexE], yGradient[indexE]); 
      float neMag = hypot(xGradient[indexNE], yGradient[indexNE]); 
      float seMag = hypot(xGradient[indexSE], yGradient[indexSE]); 
      float swMag = hypot(xGradient[indexSW], yGradient[indexSW]); 
      float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]); 
      float tmp; 
      /* 
      * An explanation of what's happening here, for those who want 
      * to understand the source: This performs the "non-maximal 
      * supression" phase of the Canny edge detection in which we 
      * need to compare the gradient magnitude to that in the 
      * direction of the gradient; only if the value is a local 
      * maximum do we consider the point as an edge candidate. 
      * 
      * We need to break the comparison into a number of different 
      * cases depending on the gradient direction so that the 
      * appropriate values can be used. To avoid computing the 
      * gradient direction, we use two simple comparisons: first we 
      * check that the partial derivatives have the same sign (1) 
      * and then we check which is larger (2). As a consequence, we 
      * have reduced the problem to one of four identical cases that 
      * each test the central gradient magnitude against the values at 
      * two points with 'identical support'; what this means is that 
      * the geometry required to accurately interpolate the magnitude 
      * of gradient function at those points has an identical 
      * geometry (upto right-angled-rotation/reflection). 
      * 
      * When comparing the central gradient to the two interpolated 
      * values, we avoid performing any divisions by multiplying both 
      * sides of each inequality by the greater of the two partial 
      * derivatives. The common comparand is stored in a temporary 
      * variable (3) and reused in the mirror case (4). 
      * 
      */ 
      if (xGrad * yGrad <= (float) 0 /*(1)*/ 
       ? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/ 
        ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/ 
         && tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/ 
        : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/ 
         && tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/ 
       : Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/ 
        ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/ 
         && tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/ 
        : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/ 
         && tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/ 
       ) { 
       magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag); 
       //NOTE: The orientation of the edge is not employed by this 
       //implementation. It is a simple matter to compute it at 
       //this point as: Math.atan2(yGrad, xGrad); 
      } else { 
       magnitude[index] = 0; 
      } 
     } 
    } 
} 

//NOTE: It is quite feasible to replace the implementation of this method 
//with one which only loosely approximates the hypot function. I've tested 
//simple approximations such as Math.abs(x) + Math.abs(y) and they work fine. 
private float hypot(float x, float y) { 
    return (float) Math.hypot(x, y); 
} 

private float gaussian(float x, float sigma) { 
    return (float) Math.exp(-(x * x)/(2f * sigma * sigma)); 
} 

private void performHysteresis(int low, int high) { 
    //NOTE: this implementation reuses the data array to store both 
    //luminance data from the image, and edge intensity from the processing. 
    //This is done for memory efficiency, other implementations may wish 
    //to separate these functions. 
    Arrays.fill(data, 0); 

    int offset = 0; 
    for (int x = 0; x < width; x++) { 
     for (int y = 0; y < height; y++) { 
      if (data[offset] == 0 && magnitude[offset] >= high) { 
       follow(x, y, offset, low); 
      } 
      offset++; 
     } 
    } 
} 

private void follow(int x1, int y1, int i1, int threshold) { 
    int x0 = x1 == 0 ? x1 : x1 - 1; 
    int x2 = x1 == width - 1 ? x1 : x1 + 1; 
    int y0 = y1 == 0 ? y1 : y1 - 1; 
    int y2 = y1 == height -1 ? y1 : y1 + 1; 

    data[i1] = magnitude[i1]; 
    try { 
     for (int x = x0; x <= x2; x++) { 
      for (int y = y0; y <= y2; y++) { 
       int i2 = x + y * width; 
       if ((y != y1 || x != x1) 
        && data[i2] == 0 
        && magnitude[i2] >= threshold) { 
        follow(x, y, i2, threshold); 
       } 
      } 
     } 
    } catch (StackOverflowError e) { 
     e.printStackTrace(); 
    } 
    return; 
} 

private void thresholdEdges() { 
    for (int i = 0; i < picsize; i++) { 
     data[i] = data[i] > 0 ? -1 : 0xff000000; 
    } 
} 

private int luminance(float r, float g, float b) { 
    return Math.round(0.299f * r + 0.587f * g + 0.114f * b); 
} 

private void readLuminance() { 
    //int type = sourceImage.getType(); 
    //if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) { 
    // We short-circuit this because we manually set the image as ARGB earlier 
    if (true) 
    { 
     //int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null); 
     int[] pixels = new int[picsize]; 
     sourceImage.getPixels(pixels, 0, width, 0, 0, width, height); 
     for (int i = 0; i < picsize; i++) { 
      int p = pixels[i]; 
      int r = (p & 0xff0000) >> 16; 
      int g = (p & 0xff00) >> 8; 
      int b = p & 0xff; 
      data[i] = luminance(r, g, b); 
     } 
    } 
    /* 
    elseif (type == BufferedImage.TYPE_BYTE_GRAY) { 
     //byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null); 
     int[] pixels = new int[picsize]; 
     sourceImage.getPixels(pixels, 0, width, 0, 0, width, height); 
     for (int i = 0; i < picsize; i++) { 
      data[i] = (pixels[i] & 0xff); 
     } 
    } 
    /*else if (type == BufferedImage.TYPE_USHORT_GRAY) { 
     short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null); 
     for (int i = 0; i < picsize; i++) { 
      data[i] = (pixels[i] & 0xffff)/256; 
     } 
    } else if (type == BufferedImage.TYPE_3BYTE_BGR) { 
     byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null); 
     int offset = 0; 
     for (int i = 0; i < picsize; i++) { 
      int b = pixels[offset++] & 0xff; 
      int g = pixels[offset++] & 0xff; 
      int r = pixels[offset++] & 0xff; 
      data[i] = luminance(r, g, b); 
     } 
    } else { 
     throw new IllegalArgumentException("Unsupported image type: " + type); 
    } 
    */ 
} 

private void normalizeContrast() { 
    int[] histogram = new int[256]; 
    for (int i = 0; i < data.length; i++) { 
     histogram[data[i]]++; 
    } 
    int[] remap = new int[256]; 
    int sum = 0; 
    int j = 0; 
    for (int i = 0; i < histogram.length; i++) { 
     sum += histogram[i]; 
     int target = sum*255/picsize; 
     for (int k = j+1; k <=target; k++) { 
      remap[k] = i; 
     } 
     j = target; 
    } 

    for (int i = 0; i < data.length; i++) { 
     data[i] = remap[data[i]]; 
    } 
} 

private void writeEdges(int pixels[]) { 
    //NOTE: There is currently no mechanism for obtaining the edge data 
    //in any other format other than an INT_ARGB type BufferedImage. 
    //This may be easily remedied by providing alternative accessors. 
    if (edgesImage == null) { 
     //edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); 
     edgesImage = Bitmap.createBitmap(width, height, Config.ARGB_8888); 
    } 
    //edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels); 
    edgesImage.setPixels(pixels, 0, width, 0, 0, width, height); 
} 

}

回答

2
// add this to chase the stack, crash is at ~150 on Nexus One 
    private int mFollowStackDepth = 100; 


    private void follow(int x1, int y1, int i1, int threshold, int depth) 
{ 
     if(depth > mFollowStackDepth) // don't run out of stack! 
      return; 
     int x0 = x1 == 0 ? x1 : x1 - 1; 
     int x2 = x1 == width - 1 ? x1 : x1 + 1; 
     int y0 = y1 == 0 ? y1 : y1 - 1; 
     int y2 = y1 == height -1 ? y1 : y1 + 1; 

     data[i1] = magnitude[i1]; 
     for (int x = x0; x <= x2; x++) { 
      for (int y = y0; y <= y2; y++) { 
       int i2 = x + y * width; 
       if ((y != y1 || x != x1) 
        && data[i2] == 0 
        && magnitude[i2] >= threshold) { 
        follow(x, y, i2, threshold, depth+1); 
        return; 
       } 
      } 
     } 
    }