我有一個地理位置社交媒體帖子的數據集,我試圖按大於1(發佈2次或更多次的用戶)的頻率過濾user_id
的頻率, 。我想過濾這個,這樣我可以進一步清理我創建的軌跡數據。按列數和寫入數據過濾Pandas df
示例代碼:
# Import Data
data = pd.read_csv('path', delimiter=',', engine='python')
#print len(data),"rows"
#print data
# Create Data Fame
df = pd.DataFrame(data, columns=['user_id','timestamp','latitude','longitude'])
#print data.head()
# Get a list of unique user_id values
uniqueIds = np.unique(data['user_id'].values)
# Get the ordered (by timestamp) coordinates for each user_id
output = [[id,data.loc[data['user_id']==id].sort_values(by='timestamp')['latitude','longitude'].values.tolist()] for id in uniqueIds]
# Save outputs
outputs = pd.DataFrame(output)
#print outputs
outputs.to_csv('path', index=False, header=False)
我試着用df[].value_counts()
得到USER_ID的計數,然後在該行output = [[......data['user_id']==id>1].....
但是通過> 1,沒有工作。是否可以將user_id
的頻率作爲附加參數添加到代碼中,並僅爲這些用戶提取信息?
的樣本數據:
user_id, timestamp, latitude, longitude
478134225, 3/12/2017 9:04, 38.8940974, -77.0276216
478103585, 3/12/2017 9:04, 38.882584, -77.1124701
478073193, 3/12/2017 9:07, 39.00027849, -77.09480086
476194185, 3/12/2017 9:14, 38.8048355, -77.0469214
476162349, 3/12/2017 9:16, 38.8940974, -77.0276216
478073193, 3/12/2017 9:05, 38.8549, -76.8752
477899275, 3/12/2017 9:08, 38.90181532, -77.03733586
477452890, 3/12/2017 9:08, 38.96117237, -76.95561893
478073193, 3/12/2017 9:05, 38.7188716, -77.1542684
的可能的複製[Python的熊貓:排除低於某一頻率計數行數](http://stackoverflow.com/questions/30485151/python-pandas-exclude-rows-below-a-certain-frequency-計數) –