0
我誤解了一些東西。這是用我的代碼sklearn vs numpy的PCA是不同的
sklearn
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import decomposition
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
pca = decomposition.PCA(n_components=3)
x = np.array([
[0.387,4878, 5.42],
[0.723,12104,5.25],
[1,12756,5.52],
[1.524,6787,3.94],
])
pca.fit_transform(x)
輸出:
array([[ -4.25324997e+03, -8.41288672e-01, -8.37858943e-03],
[ 2.97275001e+03, -1.25977271e-01, 1.82476780e-01],
[ 3.62475003e+03, -1.56843494e-01, -1.65224286e-01],
[ -2.34425007e+03, 1.12410944e+00, -8.87390454e-03]])
使用numpy的方法
x_std = StandardScaler().fit_transform(x)
cov = np.cov(X.T)
ev , eig = np.linalg.eig(cov)
a = eig.dot(x_std.T)
輸出
array([[ 1.38252552, -1.25240764, 0.2133338 ],
[-0.53279935, -0.44541231, -0.77988021],
[-0.45230635, 0.21983192, -1.23796328],
[-0.39741982, 1.47798804, 1.80450969]])
我一直都3個組成部分,但它似乎並沒有讓我保留我的原始數據。
我可以知道這是爲什麼嗎?