0
我有一條線和一些點在3D空間的那條線上。我知道這個點有一定的誤差,但是誤差只是垂直於線。要查看此信息,我希望磁盤的半徑爲錯誤半徑,並且與線的方向正交。我發現這solution,但我不能得到它的工作。Matplotlib旋轉3d磁盤
如果我跑我想將「Z」輸出正常的代碼和狀態軸我得到啥子我woudl期待。具有給定半徑的磁盤並且在z軸上定向。
pathpatch_2d_to_3d(p, z=z,normal='z')
我想旋轉的磁盤。爲了在那一點找到井向量,我使用了一個使用該向量的點。這是我作爲normal=(vx,vy,vz)
放置的矢量,但是當我這樣做時,磁盤甚至不在圖表上。我不確定我要出錯的地方。有人有建議嗎?
這是我的代碼。
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, PathPatch
from mpl_toolkits.mplot3d import Axes3D
import mpl_toolkits.mplot3d.art3d as art3d
import numpy as np
from scipy.interpolate import interp1d
md,wellz,wellx,welly=np.genfromtxt("./well.csv",delimiter=",",unpack=True)
# Building interpolation function that map a measured depth to its repsective x,y,z coordinates
fz = interp1d(md,wellz)
fx = interp1d(md,wellx)
fy = interp1d(md,welly)
pointDepth = np.array([15790,15554,15215,14911,14274,13927,13625,13284,12983,12640,12345,12004,11704,11361,11061,10717,10418,10080,9771])
def rotation_matrix(d):
"""
Calculates a rotation matrix given a vector d. The direction of d
corresponds to the rotation axis. The length of d corresponds to
the sin of the angle of rotation.
Variant of: http://mail.scipy.org/pipermail/numpy-discussion/2009-March/040806.html
"""
sin_angle = np.linalg.norm(d)
if sin_angle == 0:
return np.identity(3)
d = d/sin_angle
eye = np.eye(3)
ddt = np.outer(d, d)
skew = np.array([[ 0, d[2], -d[1]],
[-d[2], 0, d[0]],
[d[1], -d[0], 0]], dtype=np.float64)
M = ddt + np.sqrt(1 - sin_angle**2) * (eye - ddt) + sin_angle * skew
return M
def pathpatch_2d_to_3d(pathpatch, z = 0, normal = 'z'):
"""
Transforms a 2D Patch to a 3D patch using the given normal vector.
The patch is projected into they XY plane, rotated about the origin
and finally translated by z.
"""
if type(normal) is str: #Translate strings to normal vectors
index = "xyz".index(normal)
normal = np.roll((1,0,0), index)
normal = normal/np.linalg.norm(normal) #Make sure the vector is normalised
path = pathpatch.get_path() #Get the path and the associated transform
trans = pathpatch.get_patch_transform()
path = trans.transform_path(path) #Apply the transform
pathpatch.__class__ = art3d.PathPatch3D #Change the class
pathpatch._code3d = path.codes #Copy the codes
pathpatch._facecolor3d = pathpatch.get_facecolor #Get the face color
verts = path.vertices #Get the vertices in 2D
d = np.cross(normal, (0, 0, 1)) #Obtain the rotation vector
M = rotation_matrix(d) #Get the rotation matrix
pathpatch._segment3d = np.array([np.dot(M, (x, y, 0)) + (0, 0, z) for x, y in verts])
def pathpatch_translate(pathpatch, delta):
"""
Translates the 3D pathpatch by the amount delta.
"""
pathpatch._segment3d += delta
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(wellx,welly,wellz,c='k')
for n,pd in enumerate(pointDepth):
x,y,z = fx(pd),fy(pd),fz(pd)
# figure out a vector from the point
vx,vy,vz = (fx(pd-10)-x),(fy(pd-10)-y),(fz(pd-10)-z)
#Draw Circle
p = Circle((x,y), 100)
ax.add_patch(p)
pathpatch_2d_to_3d(p, z=z,normal=(vx,vy,vz))
pathpatch_translate(p,(0,0,0))
ax.set_xlim3d(np.min(wellx),np.max(wellx))
ax.set_ylim3d(np.min(welly), np.max(welly))
ax.set_zlim3d(np.min(wellz), np.max(wellz))
plt.show()