你能得到你曾經與numpy.einsum
夢想幾乎所有的東西。直到你開始了它的竅門,它基本上看起來像黑巫術......
>>> a = np.arange(15).reshape(5, 3)
>>> b = np.arange(9).reshape(3, 3)
>>> np.diag(np.dot(np.dot(a, b), a.T))
array([ 60, 672, 1932, 3840, 6396])
>>> np.einsum('ij,ji->i', np.dot(a, b), a.T)
array([ 60, 672, 1932, 3840, 6396])
>>> np.einsum('ij,ij->i', np.dot(a, b), a)
array([ 60, 672, 1932, 3840, 6396])
編輯其實你可以得到單杆整個事情,這是荒謬的......
>>> np.einsum('ij,jk,ki->i', a, b, a.T)
array([ 60, 672, 1932, 3840, 6396])
>>> np.einsum('ij,jk,ik->i', a, b, a)
array([ 60, 672, 1932, 3840, 6396])
編輯你不想讓它自己的數字太多,但...增加了OP的答案,以自己的問題進行比較。
n, p = 10000, 200
a = np.random.rand(n, p)
b = np.random.rand(p, p)
In [2]: %timeit np.einsum('ij,jk,ki->i', a, b, a.T)
1 loops, best of 3: 1.3 s per loop
In [3]: %timeit np.einsum('ij,ij->i', np.dot(a, b), a)
10 loops, best of 3: 105 ms per loop
In [4]: %timeit np.diag(np.dot(np.dot(a, b), a.T))
1 loops, best of 3: 5.73 s per loop
In [5]: %timeit (a.dot(b) * a).sum(-1)
10 loops, best of 3: 115 ms per loop
1智能代數總是比複雜的算法更好。 – Jaime