3
Boxcox模型我想用在Stata manual(第5頁)中描述的步驟,我的代碼boxcox
後的預測選項匹配在Stata 13。預測在Stata
以下是我使用的樣例代碼:
sysuse auto,clear
local indepvar weight foreign length
qui boxcox price `indepvar' ,model(lhsonly)lrtest
qui predict yhat1
qui predict resid1, residuals
//yhat2 and resid2 computed using the procedure described in Stata manual
set more off
set type double
mat coef=e(b)
local nosvar=colsof(coef)-2
qui gen constant=1
local varname weight foreign length constant
local coefname weight foreign length _cons
//step 1: compute residuals first
forvalues k = 1/`nosvar'{
local varname1 : word `k' of `varname'
local coefname1 : word `k' of `coefname'
qui gen xb`varname1'=`varname1'*_b[`coefname1']
}
qui egen xb=rowtotal(xb*)
qui gen resid=(price^(_b[theta:_cons]))-xb
//step 2: compute predicted value
qui gen yhat2=.
local noobs=_N
local theta=_b[theta:_cons]
forvalues j=1/`noobs'{
qui gen temp`j'=.
forvalues i=1/`noobs'{
qui replace temp`j'=((`theta'*(xb[`j']+resid[`i']))+1)^(1/`theta') if _n==`i'
}
qui sum temp`j'
local tempmean`j'=r(mean)
qui replace yhat2=`tempmean`j'' if _n==`j'
drop temp`j'
}
drop resid
qui gen double resid2=price-yhat2
sum yhat* resid*
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
yhat1 | 74 6254.224 2705.175 3428.361 21982.45
yhat2 | 74 1.000035 8.13e-06 1.000015 1.000054
resid1 | 74 -88.96723 2094.162 -10485.45 6980.013
resid2 | 74 6164.257 2949.496 3290 15905
注:yhat1和resid1基於塔塔predict
,而yhat2和resid2是基於我的示例代碼。需要進行比較以確保我計算的邊際效應是正確的(margins
不會計算boxcox
後的邊際效應)。
非常感謝你。它現在有效。 – Metrics 2014-08-31 13:21:43