我試圖在數據集上應用Gaussian Naive Bayes
模型來預測疾病。當我使用訓練數據進行預測時,它運行正常,但是當我試圖預測使用測試數據時它正在給出ValueError
。Scikit學習 - ValueError:操作數無法一起播放
runfile('D:/ROFI/ML/Heart Disease/prediction.py', wdir='D:/ROFI/ML/Heart Disease') Traceback (most recent call last):
File "", line 1, in runfile('D:/ROFI/ML/Heart Disease/prediction.py', wdir='D:/ROFI/ML/Heart Disease')
File "C:\Users\User\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 866, in runfile execfile(filename, namespace)
File "C:\Users\User\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile exec(compile(f.read(), filename, 'exec'), namespace)
File "D:/ROFI/ML/Heart Disease/prediction.py", line 85, in predict(x_train, y_train, x_test, y_test)
File "D:/ROFI/ML/Heart Disease/prediction.py", line 73, in predict predicted_data = model.predict(x_test)
File "C:\Users\User\Anaconda3\lib\site-packages\sklearn\naive_bayes.py", line 65, in predict jll = self._joint_log_likelihood(X)
File "C:\Users\User\Anaconda3\lib\site-packages\sklearn\naive_bayes.py", line 429, in _joint_log_likelihood n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) /
ValueError: operands could not be broadcast together with shapes (294,14) (15,)
這裏有什麼問題?
import pandas
from sklearn import metrics
from sklearn.preprocessing import Imputer
from sklearn.naive_bayes import GaussianNB
def load_data(feature_columns, predicted_column):
train_data_frame = pandas.read_excel("training_data.xlsx")
test_data_frame = pandas.read_excel("testing_data.xlsx")
data_frame = pandas.read_excel("data_set.xlsx")
x_train = train_data_frame[feature_columns].values
y_train = train_data_frame[predicted_column].values
x_test = test_data_frame[feature_columns].values
y_test = test_data_frame[predicted_column].values
x_train, x_test = impute(x_train, x_test)
return x_train, y_train, x_test, y_test
def impute(x_train, x_test):
fill_missing = Imputer(missing_values=-9, strategy="mean", axis=0)
x_train = fill_missing.fit_transform(x_train)
x_test = fill_missing.fit_transform(x_test)
return x_train, x_test
def predict(x_train, y_train, x_test, y_test):
model = GaussianNB()
model.fit(x_train, y_train.ravel())
predicted_data = model.predict(x_test)
accuracy = metrics.accuracy_score(y_test, predicted_data)
print("Accuracy of our naive bayes model is : %.2f"%(accuracy * 100))
return predicted_data
feature_columns = ["age", "sex", "chol", "cigs", "years", "fbs", "trestbps", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "num"]
predicted_column = ["cp"]
x_train, y_train, x_test, y_test = load_data(feature_columns, predicted_column)
predict(x_train, y_train, x_test, y_test)
N.B:兩個文件具有相同的列數。
你可以發佈完整的堆棧跟蹤嗎? – EFT
@EFT我已經發布了完整的追蹤。順便說一句,我剛剛發現'Imputer'正在刪除一列,因爲它完全由缺失值組成。有什麼辦法可以防止這種情況發生? –
沒有人在這裏使用'read_excel(「training_data.xlsx」)''使用的文件。你能用公共數據集重現這個問題嗎? –