2012-10-30 103 views
5

如何在matlab中繪製地圈?如何在matlab中繪製地球?

通過Geosphere我的意思是一個球體上的離散點的方式(Geosphere是,例如在3Ds Max中)。

在下面的圖像中,示出Sphere(在左側)和Geosphere(右側) enter image description here

在Matlab中有一個函數sphere,這給了這樣的結果: enter image description here

我需要得到這樣一個地圈的圖像。我有一個矩陣Nx3,其中xyz座標是Geosphere中的每個點。

UPDATE:

我有問題只顯示(圖)岩石圈,因爲我已經有數據 - 每一個點的XYZ座標。這就是爲什麼Gunther Struyf的答案幫助我,我接受了它。

這與我的顯示這樣的方式得到: enter image description here

(係數= 6,N = 362的地圈)如何獲得岩石圈三維點?我用免費圖書館SPHERE_GRID獲得三維球的點。 (在圖書館裏有不同的離散化方式)。

另外,爲了計算地圈的積分,謝謝@Rody Oldenhuis的回答如下。

+0

現在我很感興趣你如何構建了點陣列:對 –

+0

@GuntherStruy:看我的答案:) –

回答

5

如果您已經擁有了點,我想你可以使用相同的解決方案爲here

tri = convhull(xyz); 
trisurf(tri,xyz(:,1),xyz(:,2),xyz(:,3)); 
+0

是的,它的工作。謝謝 –

5

我有一個函數趴在這裏即能產生球體的三角測量高達任意精度。這是我基於Giaccari Luigi的buildsphere的一個函數,他可悲地完全消失在互聯網上(以及這個函數)。

所以,我會在這裏和我的文件交換帳戶上發佈它。一旦獲得批准,我將用鏈接替換此代碼。

請注意,我的計算機上有一些預先生成的模型,該函數依賴於此模型。在運行之前,您必須先刪除該部分。

用於繪製生成的球體:請參閱Gunther Struyf的答案。

function [p, t] = TriSphere(N, R) 
% TRISPHERE: Returns the triangulated model of a sphere using the 
% icosaedron subdivision method. 
% 
% INPUT: 
% N (integer number) indicates the number of subdivisions, 
% it can assumes values between 0-inf. The greater N the better will look 
% the surface but the more time will be spent in surface costruction and 
% more triangles will be put in the output model. 
% 
% OUTPUT: 
% In p (nx3) and t(mx3) we can find points and triangles indexes 
% of the model. The sphere is supposed to be of unit radius and centered in 
% (0,0,0). To obtain spheres centered in different location, or with 
% different radius, is just necessary a traslation and a scaling 
% trasformation. These operation are not perfomed by this code beacuse it is 
% extrimely convinient, in order of time perfomances, to do this operation 
% out of the function avoiding to call the costruction step each time. 
% 
% NOTE: 
% This function is more efficient than the matlab command sphere in 
% terms of dimension fo the model/ accuracy of recostruction. This due to 
% well traingulated model that requires a minor number of patches for the 
% same geometrical recostruction accuracy. Possible improvement are possible 
% in time execution and model subdivision flexibilty. 
% 
% EXAMPLE: 
% 
% N=5; 
% 
% [p,t] = TriSphere(N); 
% 
% figure(1) axis equal hold on trisurf(t,p(:,1),p(:,2),p(:,3)); axis vis3d 
% view(3) 

% Author: Giaccari Luigi Created:25/04/2009% 
% For info/bugs/questions/suggestions : [email protected] 
% ORIGINAL NAME: BUILDSPHERE 
% 
% Adjusted by Rody Oldenhuis (speed/readability) 

    % error traps 
    error(nargchk(1,1,nargin)); 
    error(nargoutchk(1,2,nargout)); 
    if ~isscalar(N) 
     error('Buildsphere:N_mustbe_scalar',... 
      'Input N must be a scalar.'); 
    end  
    if round(N) ~= N 
     error('Buildsphere:N_mustbe_scalar',... 
      'Input N must be an integer value.'); 
    end 

    % Coordinates have been taken from Jon Leech' files 

    % Twelve vertices of icosahedron on unit sphere 
    tau = 0.8506508083520400; % t = (1+sqrt(5))/2, tau = t/sqrt(1+t^2) 
    one = 0.5257311121191336; % one = 1/sqrt(1+t^2) (unit sphere)  
    p = [ 
     +tau +one +0  % ZA 
     -tau +one +0  % ZB 
     -tau -one +0  % ZC 
     +tau -one +0  % ZD 
     +one +0 +tau % YA 
     +one +0 -tau % YB 
     -one +0 -tau % YC 
     -one +0 +tau % YD 
     +0 +tau +one % XA 
     +0 -tau +one % XB 
     +0 -tau -one % XC 
     +0 +tau -one]; % XD 

    % Structure for unit icosahedron 
    t = [ 
     5 8 9 
     5 10 8 
     6 12 7 
     6 7 11 
     1 4 5 
     1 6 4 
     3 2 8 
     3 7 2 
     9 12 1 
     9 2 12 
     10 4 11 
     10 11 3 
     9 1 5 
     12 6 1 
     5 4 10 
     6 11 4 
     8 2 9 
     7 12 2 
     8 10 3 
     7 3 11 ]; 

    % possible quick exit 
    if N == 0, return, end 

    % load pre-generated trispheres (up to 8 now...) 
    if N <= 8 
     S = load(['TriSphere', num2str(N), '.mat'],'pts','idx'); 
     p = S.pts; t = S.idx; 
     if nargin == 2, p = p*R; end 
     return 
    else 
     % if even more is requested (why on Earth would you?!), make sure to START 
     % from the maximum pre-loadable trisphere 
     S = load('TriSphere8.mat','pts','idx'); 
     p = S.pts; t = S.idx; clear S; N0 = 10; 
    end 

    % how many triangles/vertices do we have? 
    nt = size(t,1); np = size(p,1); totp = np;  
    % calculate the final number of points  
    for ii=N0:N, totp = 4*totp - 6; end  
    % initialize points array 
    p = [p; zeros(totp-12, 3)]; 

    % determine the appropriate class for the triangulation indices 
    numbits = 2^ceil(log(log(totp+1)/log(2))/log(2)); 
    castToInt = ['uint',num2str(numbits)]; 

    % issue warning when required 
    if numbits > 64 
     warning('TriSphere:too_many_notes',... 
      ['Given number of iterations would require a %s class to accurately ',... 
      'represent the triangulation indices. Using double instead; Expect ',... 
      'strange results!']); 
     castToInt = @double; 
    else 
     castToInt = str2func(castToInt); 
    end 

    % refine icosahedron N times 
    for ii = N0:N 
     % initialize inner loop 
     told = t; 
     t = zeros(nt*4, 3); 
     % Use sparse. Yes, its slower in a loop, but for N = 6 the size is 
     % already ~10,000x10,000, growing by a factor of 4 with every 
     % increasing N; its simply too memory intensive to use zeros(). 
     peMap = sparse(np,np); 
     ct = 1;   
     % loop trough all old triangles   
     for j = 1:nt 

      % some helper variables 
      p1 = told(j,1); 
      p2 = told(j,2); 
      p3 = told(j,3); 
      x1 = p(p1,1); x2 = p(p2,1); x3 = p(p3,1); 
      y1 = p(p1,2); y2 = p(p2,2); y3 = p(p3,2); 
      z1 = p(p1,3); z2 = p(p2,3); z3 = p(p3,3); 

      % first edge 
      % -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 

      % preserve triangle orientation 
      if p1 < p2, p1m = p1; p2m = p2; else p2m = p1; p1m = p2; end 

      % If the point does not exist yet, calculate the new point    
      p4 = peMap(p1m,p2m); 
      if p4 == 0 
       np = np+1; 
       p4 = np; 
       peMap(p1m,p2m) = np;%#ok 
       p(np,1) = (x1+x2)/2; 
       p(np,2) = (y1+y2)/2; 
       p(np,3) = (z1+z2)/2; 
      end 

      % second edge 
      % -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 

      % preserve triangle orientation 
      if p2 < p3; p2m = p2; p3m = p3; else p2m = p3; p3m = p2; end 

      % If the point does not exist yet, calculate the new point 
      p5 = peMap(p2m,p3m); 
      if p5 == 0 
       np = np+1; 
       p5 = np; 
       peMap(p2m,p3m) = np;%#ok 
       p(np,1) = (x2+x3)/2; 
       p(np,2) = (y2+y3)/2; 
       p(np,3) = (z2+z3)/2; 
      end 

      % third edge 
      % -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 

      % preserve triangle orientation 
      if p1 < p3; p1m = p1; p3m = p3; else p3m = p1; p1m = p3; end 

      % If the point does not exist yet, calculate the new point    
      p6 = peMap(p1m,p3m); 
      if p6 == 0 
       np = np+1; 
       p6 = np; 
       peMap(p1m,p3m) = np;%#ok 
       p(np,1) = (x1+x3)/2; 
       p(np,2) = (y1+y3)/2; 
       p(np,3) = (z1+z3)/2;     
      end 

      % allocate new triangles 
      % refine indexing 
      %   p1 
      %   /\ 
      %   /t1\ 
      %  p6/____\p4 
      %  /\ /\ 
      %  /t4\t2/t3\ 
      %  /____\/____\ 
      % p3 p5  p2    
      t(ct,1) = p1; t(ct,2) = p4; t(ct,3) = p6; ct = ct+1;    
      t(ct,1) = p4; t(ct,2) = p5; t(ct,3) = p6; ct = ct+1; 
      t(ct,1) = p4; t(ct,2) = p2; t(ct,3) = p5; ct = ct+1;    
      t(ct,1) = p6; t(ct,2) = p5; t(ct,3) = p3; ct = ct+1; 

     end % end subloop 
     % update number of triangles 
     nt = ct-1;   
    end % end main loop 

    % normalize all points to 1 (or R) 
    p = bsxfun(@rdivide, p, sqrt(sum(p.^2,2))); 
    if (nargin == 2), p = p*R; end 
    % convert t to proper integer class 
    t = castToInt(t);  

end % funciton TriSphere