2016-11-08 182 views
4

對於每個日期date我想要從品牌的每個組合中獲得金額的平均值。熊貓創建powerset和平均數據

例如,我有一個數據幀:

df1 = 
Company Brand Date  Amount 
A  1  01/01/2015 3  
A  1  01/02/2015 4 
A  1  01/03/2015 2 
A  2  01/01/2015 7  
A  2  01/02/2015 2 
A  2  01/03/2015 1 
A  3  01/01/2015 6  
A  3  01/02/2015 3 
A  3  01/03/2015 1 

和我想要的結果是以下DF,其中所述的量是組合組的平均值:

result = 
Company Brand Date  Amount 
A  1  01/01/2015 3  
A  1  01/02/2015 4 
A  1  01/03/2015 2 
A  2  01/01/2015 7  
A  2  01/02/2015 2 
A  2  01/03/2015 1 
A  3  01/01/2015 6  
A  3  01/02/2015 3 
A  3  01/03/2015 1 
A  1_2 01/01/2015 5  
A  1_2 01/02/2015 3 
A  1_2 01/03/2015 1.5 
A  2_3 01/01/2015 6.5 
A  2_3 01/02/2015 2.5 
A  2_3 01/03/2015 1 
A  1_3 01/01/2015 4.5  
A  1_3 01/02/2015 3.5 
A  1_3 01/03/2015 1.5 
A  1_2_3 01/01/2015 5.33 
A  1_2_3 01/02/2015 3 
A  1_2_3 01/03/2015 1.33 

目前,我用groupby來做這個循環,但速度很慢。

d = pd.DataFrame() 
comb = ['1_2','1_3','2_3','1_2_3'] 
for c in comb: 
    new = df1.loc[(df1.Brand.isin(map(int,c.split('_')))].groupby(['Company','Date'])['Amount'].mean().reset_index() 
    new.insert(1,'Group',c) 
    d = d.append(new) 

    df = df.append(d) 

但是,我正在與千家獨特的公司和數百萬行,所以這是非常緩慢的。有沒有辦法加快這一點?

回答

1
from itertools import combinations 

# define a generator to use combinations 
# (iterate through combinations of a specific length) 
# and iterate through all combinations 
def combo(iterable): 
    for r in range(1, len(iterable) + 1): 
     for c in combinations(iterable, r): 
      yield c 

df.groupby(['Company', 'Date']).Brand.unique().apply(
    lambda x: pd.Series(
     {'_'.join(map(str, blist)): df.query('Brand in @blist').Amount.sum() for blist in combo(x)}, 
    ) 
).rename_axis('Combo', 1).stack().reset_index(name='Amount') 

enter image description here

2
import pandas as pd 
from itertools import chain, combinations 

def powerset(iterable): 
    "powerset([1,2,3]) -->() (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" 
    s = list(iterable) 
    return chain.from_iterable(combinations(s, r) for r in range(1, len(s)+1)) 

a = [['A', 'b1', '01/01/2015', 3], 
['A', 'b1', '01/02/2015', 4], 
['A', 'b1', '01/03/2015', 2], 
['A', 'b2', '01/01/2015', 7], 
['A', 'b2', '01/02/2015', 2], 
['A', 'b2', '01/03/2015', 1], 
['A', 'b3', '01/01/2015', 6], 
['A', 'b3', '01/02/2015', 3], 
['A', 'b3', '01/03/2015', 1]] 

df = pd.DataFrame(a, columns=['Company', 'Brand', 'Date', 'Amount']) 

ps = powerset(['b1', 'b2', 'b3']) 
# create new dataframe to append to 
new_df = pd.DataFrame() 
for s in ps: 
    view = df[df.Brand.isin(s)].groupby(['Company', 'Date']).mean() 
    view['Brand'] = '_'.join(s) 
    new_df = new_df.append(view) 

輸出看起來像:

     Amount  Brand 
Company Date       
A  01/01/2015 3.000000  b1 
     01/02/2015 4.000000  b1 
     01/03/2015 2.000000  b1 
     01/01/2015 7.000000  b2 
     01/02/2015 2.000000  b2 
     01/03/2015 1.000000  b2 
     01/01/2015 6.000000  b3 
     01/02/2015 3.000000  b3 
     01/03/2015 1.000000  b3 
     01/01/2015 5.000000  b1_b2 
     01/02/2015 3.000000  b1_b2 
     01/03/2015 1.500000  b1_b2 
     01/01/2015 4.500000  b1_b3 
     01/02/2015 3.500000  b1_b3 
     01/03/2015 1.500000  b1_b3 
     01/01/2015 6.500000  b2_b3 
     01/02/2015 2.500000  b2_b3 
     01/03/2015 1.000000  b2_b3 
     01/01/2015 5.333333 b1_b2_b3 
     01/02/2015 3.000000 b1_b2_b3 
     01/03/2015 1.333333 b1_b2_b3