2017-06-01 41 views
3

我正在學習使用Tensorflow框架進行情感分析。預測情感分析時的錯誤Tensorflow NLTK

我下面從pythonprogramming_tutorial(create_feature_sets_and_labels)教程和pythonprogramming_tutorial(train_test)

create_sentiment_featuresets.py(第一鏈路),我加只有一個方法以提取詞彙和修改的代碼中給出sentiment_demo.py(第二鏈接)來測試給定輸入字符串的情緒。

create_sentiment_featuresets.py

import nltk 
from nltk.tokenize import word_tokenize 
import numpy as np 
import random 
import pickle 
from collections import Counter 
from nltk.stem import WordNetLemmatizer 

lemmatizer = WordNetLemmatizer() 
hm_lines = 100000 
def create_lexicon(pos, neg): 

    lexicon = [] 
    with open(pos, 'r') as f: 
     contents = f.readlines()   # readline vs strip 
     for l in contents[:len(contents)]: 
      l= l.decode('utf-8') 
      all_words = word_tokenize(l) 
      lexicon += list(all_words) 

    f.close() 

    with open(neg, 'r') as f: 
     contents = f.readlines()   # readline vs strip 
     for l in contents[:len(contents)]: 
      l= l.decode('utf-8') 
      all_words = word_tokenize(l) 
      lexicon += list(all_words) 

    f.close() 

    lexicon = [lemmatizer.lemmatize(i) for i in lexicon] 
    w_counts = Counter(lexicon) 
    #print(len(w_counts)) 
    l2 = [] 
    for w in w_counts: 
     if 1000 > w_counts[w] > 50: 
      l2.append(w) 
    #print(len(l2)) 
    #print(l2) 
    print("Lexicon length create_lexicon: ",len(lexicon)) 

    return l2 

def sample_handling(sample, lexicon, classification): 

    featureset = [] 
    print("Lexicon length Sample handling: ",len(lexicon)) 
    with open(sample, 'r') as f: 
     contents = f.readlines() 
     for l in contents[:len(contents)]: 
      l= l.decode('utf-8') 
      current_words = word_tokenize(l.lower()) 
      current_words= [lemmatizer.lemmatize(i) for i in current_words] 

      features = np.zeros(len(lexicon)) 
      for word in current_words: 
       if word.lower() in lexicon: 
        index_value = lexicon.index(word.lower()) 
        features[index_value] +=1 

      features = list(features) 
      featureset.append([features, classification]) 
    f.close() 
    print("Feature SET------") 
    print(len(featureset)) 
    return featureset 

def create_feature_sets_and_labels(pos, neg, test_size = 0.1): 
    global m_lexicon 
    m_lexicon = create_lexicon(pos, neg) 
    features = [] 
    features += sample_handling(pos, m_lexicon, [1,0]) 
    features += sample_handling(neg, m_lexicon, [0,1]) 

    random.shuffle(features) 
    features = np.array(features) 

    testing_size = int(test_size * len(features)) 

    train_x = list(features[:,0][:-testing_size]) 
    #print("TRAIN_X", train_x) 
    train_y = list(features[:,1][:-testing_size]) 
    #print("TRAIN_Y", train_y) 
    test_x = list(features[:,0][-testing_size:]) 
    test_y = list(features[:,1][-testing_size:]) 

    return train_x, train_y, test_x, test_y 

def get_lexicon(): 
    global m_lexicon 
    return m_lexicon 

用於訓練和測試我使用的第一個鏈接中給出的pos.txt和neg.txt。該文件包含5000句正面和負面的repectively的

下面是我的sentiment_demo.py:

from create_sentiment_featuresets import create_feature_sets_and_labels 
from create_sentiment_featuresets import get_lexicon 

import tensorflow as tf 
import pickle 
import numpy as np 

# extras for testing 
from nltk.tokenize import word_tokenize 
from nltk.stem import WordNetLemmatizer 
lemmatizer = WordNetLemmatizer() 
#- end extras 


train_x, train_y, test_x, test_y = create_feature_sets_and_labels('pos.txt', 'neg.txt') 

n_nodes_hl1 = 1500 
n_nodes_hl2 = 1500 
n_nodes_hl3 = 1500 

n_classes = 2 
batch_size = 100 
hm_epochs = 5 

x = tf.placeholder('float') 
y = tf.placeholder('float') 

hidden_1_layer = {'f_fum': n_nodes_hl1, 
       'weight': tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])), 
       'bias': tf.Variable(tf.random_normal([n_nodes_hl1]))} 
hidden_2_layer = {'f_fum': n_nodes_hl2, 
       'weight': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 
       'bias': tf.Variable(tf.random_normal([n_nodes_hl2]))} 
hidden_3_layer = {'f_fum': n_nodes_hl3, 
       'weight': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 
       'bias': tf.Variable(tf.random_normal([n_nodes_hl3]))} 
output_layer = {'f_fum': None, 
       'weight': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), 
       'bias': tf.Variable(tf.random_normal([n_classes]))} 


def nueral_network_model(data): 

    l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['bias']) 
    l1 = tf.nn.relu(l1) 

    l2 = tf.add(tf.matmul(l1, hidden_2_layer['weight']), hidden_2_layer['bias']) 
    l2 = tf.nn.relu(l2) 

    l3 = tf.add(tf.matmul(l2, hidden_3_layer['weight']), hidden_3_layer['bias']) 
    l3 = tf.nn.relu(l3) 

    output = tf.matmul(l3, output_layer['weight']) + output_layer['bias'] 

    return output 

def train_neural_network(x): 
    prediction = nueral_network_model(x) 
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= prediction, labels= y)) 
    optimizer = tf.train.AdamOptimizer(learning_rate= 0.001).minimize(cost) 



    with tf.Session() as sess: 
     sess.run(tf.global_variables_initializer()) 

     for epoch in range(hm_epochs): 
      epoch_loss = 0 
      i = 0 
      while i < len(train_x): 
       start = i 
       end = i+ batch_size 
       batch_x = np.array(train_x[start: end]) 
       batch_y = np.array(train_y[start: end]) 

       _, c = sess.run([optimizer, cost], feed_dict= {x: batch_x, y: batch_y}) 
       epoch_loss += c 
       i+= batch_size 
      print('Epoch', epoch+ 1, 'completed out of ', hm_epochs, 'loss:', epoch_loss) 

     correct= tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) 
     accuracy = tf.reduce_mean(tf.cast(correct, 'float')) 

     print('Accuracy:', accuracy.eval({x:test_x, y:test_y})) 


     # testing ------Trying to predict the sentiment for an input string-------- 
     m_lexicon= get_lexicon() 
     print('Lexicon length: ',len(m_lexicon)) 

     input_data= "He is an idiot" 

     current_words= word_tokenize(input_data.lower()) 
     current_words = [lemmatizer.lemmatize(i) for i in current_words] 
     features = np.zeros(len(m_lexicon)) 

     for word in current_words: 
      if word.lower() in m_lexicon: 
       index_value = m_lexicon.index(word.lower()) 
       features[index_value] +=1 

     features = np.array(list(features)) 
     print('features length: ',len(features)) 
     result = sess.run(tf.argmax(prediction.eval(feed_dict={x:features}), 1)) 
     print('RESULT: ', result) 
     if result[0] == 0: 
      print('Positive: ', input_data) 
     elif result[0] == 1: 
      print('Negative: ', input_data) 


train_neural_network(x) 

課程校工作,直到劃時代損失priniting後,其給予以下錯誤:

('Epoch', 1, 'completed out of ', 5, 'loss:', 1289814.4057617188) 
('Epoch', 2, 'completed out of ', 5, 'loss:', 457882.97705078125) 
('Epoch', 3, 'completed out of ', 5, 'loss:', 243073.83074951172) 
('Epoch', 4, 'completed out of ', 5, 'loss:', 245525.22399902344) 
('Epoch', 5, 'completed out of ', 5, 'loss:', 233219.91000366211) 
('Accuracy:', 0.59287059) 
('Lexicon length: ', 423) 
('features length: ', 423) 
Traceback (most recent call last): 
    File "sentiment_demo.py", line 110, in <module> 
train_neural_network(x) 
    File "sentiment_demo.py", line 102, in train_neural_network 
result = sess.run(tf.argmax(prediction.eval(feed_dict={x:features}), 1)) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 569, in eval 
return _eval_using_default_session(self, feed_dict, self.graph, session) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3741, in _eval_using_default_session 
return session.run(tensors, feed_dict) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 778, in run 
run_metadata_ptr) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 982, in _run 
feed_dict_string, options, run_metadata) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1032, in _do_run 
target_list, options, run_metadata) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1052, in _do_call 
raise type(e)(node_def, op, message) 
tensorflow.python.framework.errors_impl.InvalidArgumentError: In[0] is not a matrix 
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_23, Variable/read)]] 
[[Node: add/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_4_add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

Caused by op u'MatMul', defined at: 
    File "sentiment_demo.py", line 110, in <module> 
    train_neural_network(x) 
    File "sentiment_demo.py", line 58, in train_neural_network 
    prediction = nueral_network_model(x) 
    File "sentiment_demo.py", line 44, in nueral_network_model 
    l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['bias']) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py", line 1801, in matmul 
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 1263, in _mat_mul 
transpose_b=transpose_b, name=name) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 768, in apply_op 
op_def=op_def) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2336, in create_op 
original_op=self._default_original_op, op_def=op_def) 
    File "/home/lsmpc/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1228, in __init__ 
self._traceback = _extract_stack() 

InvalidArgumentError (see above for traceback): In[0] is not a matrix 
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_23, Variable/read)]] 
[[Node: add/_25 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_4_add", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

上述錯誤特別指向此:

Caused by op u'MatMul', defined at: 
    File "sentiment_demo.py", line 110, in <module> 
    train_neural_network(x) 
    File "sentiment_demo.py", line 58, in train_neural_network 
    prediction = nueral_network_model(x) 
    File "sentiment_demo.py", line 44, in nueral_network_model 
    l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['bias']) 

我是新來的,我不能修復它。

+0

上面寫着「result = sess.run(tf.argmax(prediction.eval(feed_dict = {x:features}),1))」gives「In [0]不是一個矩陣」你能得到'prediction.eval'工作? – doctorlove

+0

我遵循下一個教程https://pythonprogramming.net/data-size-example-tensorflow-deep-learning-tutorial/(最後一部分)中使用100萬句子上的數據集的測試代碼。我對此很新。我也無法修復prediction.eval。 – LinuxBeginner

回答

1

看起來像你的features是錯誤的形狀。請試試這個:

features = np.array(list(features)).reshape(1,-1) 

你的模型接受批量數據,所以如果你想運行只有一個預測,則需要重新塑造它作爲一個批次1.祝你好運!

+0

非常感謝您的幫助。它的工作現在! 你能否請詳細解釋一下,或者指出我應該閱讀哪些教程或材料,以便了解上述問題。 – LinuxBeginner