我建立了一個簡單的線性迴歸模型,'Score'作爲因變量,'Activity'作爲獨立變量。 '活動'有5個等級:'聽'(參考等級),'read1','read2','watch1','watch2'。如何解釋R中的TukeyHSD輸出? (相對於潛在的迴歸模型)
Call:
lm(formula = Score ~ Activity)
Residuals:
Min 1Q Median 3Q Max
-22.6154 -8.6154 -0.6154 7.1346 31.3846
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.615 2.553 16.302 <2e-16 ***
Activityread1 6.385 7.937 0.804 0.4254
Activityread2 20.885 9.552 2.186 0.0340 *
Activitywatch1 3.885 4.315 0.900 0.3728
Activitywatch2 -11.415 6.357 -1.796 0.0792 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 13.02 on 45 degrees of freedom
Multiple R-squared: 0.1901, Adjusted R-squared: 0.1181
F-statistic: 2.64 on 4 and 45 DF, p-value: 0.04594
爲了獲得所有成對比較,我進行TukeyHSD測試,我有困難解釋其輸出。雖然模型的輸出顯示我們唯一的顯着影響是由於'listen'和'read2'之間的對比,TukeyHSD結果顯示'watch2'和'read2'之間存在唯一的顯着差異。這是什麼意思?
> TukeyHSD(aov(mod4), "Activity")
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = mod4)
$Activity
diff lwr upr p adj
read1-listen 6.384615 -16.168371 28.937602 0.9279144
read2-listen 20.884615 -6.256626 48.025857 0.2034549
watch1-listen 3.884615 -8.376548 16.145779 0.8952957
watch2-listen -11.415385 -29.477206 6.646437 0.3885969
read2-read1 14.500000 -19.264610 48.264610 0.7397464
watch1-read1 -2.500000 -26.031639 21.031639 0.9981234
watch2-read1 -17.800000 -44.811688 9.211688 0.3466391
watch1-read2 -17.000000 -44.959754 10.959754 0.4278714
watch2-read2 -32.300000 -63.245777 -1.354223 0.0368820
watch2-watch1 -15.300000 -34.569930 3.969930 0.1783961
當談到模型報告時,我該怎麼報告? TukeyHSD輸出應該是我考慮的唯一事情嗎? – fannilegoza
這將取決於你的學習/假設是什麼,我猜想這個想法是,閱讀和觀看組的表現會比聽衆組更好(更多的參與)。如果你所關心的是從監聽基線的改進忽略TukeyHSD結果並報告模型中的p值 – Nate