我有一個訓練有素的模型,我使用CNTK.load_model()
函數加載。我正在查看CNTK git repo上的MNIST Tutorial作爲模型評估代碼的參考。我創建了一個數據讀取器(這是一個MinibatchSource
對象),並試圖運行model.eval(mb)
其中mb = minibatch_source.next_minibatch(...)
(類似this answer)CNTK python API:如何從訓練過的模型中獲取預測結果?
但是,我發現了以下錯誤消息
Traceback (most recent call last):
File "LID_test.py", line 162, in <module>
test_and_evaluate()
File "LID_test.py", line 159, in test_and_evaluate
predictions = model.eval(mb)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/ops/functions.py", line 228, in eval
_, output_map = self.forward(arguments, self.outputs, device=device, as_numpy=as_numpy)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/utils/swig_helper.py", line 62, in wrapper
result = f(*args, **kwds)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/ops/functions.py", line 354, in forward
None, device)
File "/home/t-asbahe/anaconda3/envs/cntk-py35/lib/python3.5/site-packages/cntk/utils/__init__.py", line 393, in sanitize_var_map
if len(arguments) < len(op_arguments):
TypeError: object of type 'Variable' has no len()
我沒有input_variable
在我的模型中命名爲'Variable'
,我看不出有任何理由可以得到此錯誤。
PS:我的輸入是稀疏的輸入(一白熱化)