我認爲這應該是一個非常簡單的問題,但我無法找到解決方案或有效的關鍵字進行搜索。用OpenCV裁剪黑色邊緣
我只有這張圖片。所以,我要削減他們,只留下Windows圖標(和藍色背景)
黑邊是無用的。
我不想計算Windows圖標的座標和大小。 GIMP和Photoshop有自動裁剪功能。 OpenCV沒有一個?
我認爲這應該是一個非常簡單的問題,但我無法找到解決方案或有效的關鍵字進行搜索。用OpenCV裁剪黑色邊緣
我只有這張圖片。所以,我要削減他們,只留下Windows圖標(和藍色背景)
黑邊是無用的。
我不想計算Windows圖標的座標和大小。 GIMP和Photoshop有自動裁剪功能。 OpenCV沒有一個?
我不確定你的所有圖像是否都是這樣的。但是對於這個圖像,下面是一個簡單的python-opencv代碼來裁剪它。
第一導入庫:
import cv2
import numpy as np
讀取圖像,將其轉換爲灰度,並在二值圖像爲1
img = cv2.imread('sofwin.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
閾值現在找到的輪廓在裏面。將只有一個對象,所以找到它的邊界矩形。
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)
現在裁剪圖像,並將其保存到另一個文件中。
crop = img[y:y+h,x:x+w]
cv2.imwrite('sofwinres.png',crop)
下面是結果:
import numpy as np
def autocrop(image, threshold=0):
"""Crops any edges below or equal to threshold
Crops blank image to 1x1.
Returns cropped image.
"""
if len(image.shape) == 3:
flatImage = np.max(image, 2)
else:
flatImage = image
assert len(flatImage.shape) == 2
rows = np.where(np.max(flatImage, 0) > threshold)[0]
if rows.size:
cols = np.where(np.max(flatImage, 1) > threshold)[0]
image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
else:
image = image[:1, :1]
return image
爲什麼要刪除顏色通道? '''flatImage = np.max(image,2)''' –
由於使用了灰色閾值。像往常一樣有多種合適的實現,這只是其中之一。 – fviktor
怎麼樣一個漂亮的小遞歸函數?
import cv2
import numpy as np
def trim(frame):
#crop top
if not np.sum(frame[0]):
return trim(frame[1:])
#crop bottom
elif not np.sum(frame[-1]):
return trim(frame[:-2])
#crop left
elif not np.sum(frame[:,0]):
return trim(frame[:,1:])
#crop right
elif not np.sum(frame[:,-1]):
return trim(frame[:,:-2])
return frame
負載和閾值圖像,以確保暗區爲黑色:
img = cv2.imread("path_to_image.png")
thold = (img>120)*img
然後調用遞歸函數
trimmedImage = trim(thold)
OK,所以對於完整性,我實現了各上面的建議,增加了遞歸算法的迭代版本(一旦糾正)並做了一組性能測試。
TLDR:遞歸可能是最好的平均情況下(但使用下面的 - OP有幾個錯誤),autocrop是最好的圖像,你期望幾乎是空的。
一般發現: 1.上面的遞歸算法有一對一的錯誤。更正後的版本如下。 2. cv2.findContours函數存在非矩形圖像的問題,實際上甚至在各種情況下修剪了一些圖像。我添加了一個使用cv2.CHAIN_APPROX_NONE的版本來查看它是否有幫助(它沒有幫助)。 3. autocrop實現對於稀疏圖像很有用,但對於密集圖像很差,這是遞歸/迭代算法的逆。
import numpy as np
import cv2
def trim_recursive(frame):
if frame.shape[0] == 0:
return np.zeros((0,0,3))
# crop top
if not np.sum(frame[0]):
return trim_recursive(frame[1:])
# crop bottom
elif not np.sum(frame[-1]):
return trim_recursive(frame[:-1])
# crop left
elif not np.sum(frame[:, 0]):
return trim_recursive(frame[:, 1:])
# crop right
elif not np.sum(frame[:, -1]):
return trim_recursive(frame[:, :-1])
return frame
def trim_contours(frame):
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
return np.zeros((0,0,3))
cnt = contours[0]
x, y, w, h = cv2.boundingRect(cnt)
crop = frame[y:y + h, x:x + w]
return crop
def trim_contours_exact(frame):
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if len(contours) == 0:
return np.zeros((0,0,3))
cnt = contours[0]
x, y, w, h = cv2.boundingRect(cnt)
crop = frame[y:y + h, x:x + w]
return crop
def trim_iterative(frame):
for start_y in range(1, frame.shape[0]):
if np.sum(frame[:start_y]) > 0:
start_y -= 1
break
if start_y == frame.shape[0]:
if len(frame.shape) == 2:
return np.zeros((0,0))
else:
return np.zeros((0,0,0))
for trim_bottom in range(1, frame.shape[0]):
if np.sum(frame[-trim_bottom:]) > 0:
break
for start_x in range(1, frame.shape[1]):
if np.sum(frame[:, :start_x]) > 0:
start_x -= 1
break
for trim_right in range(1, frame.shape[1]):
if np.sum(frame[:, -trim_right:]) > 0:
break
end_y = frame.shape[0] - trim_bottom + 1
end_x = frame.shape[1] - trim_right + 1
# print('iterative cropping x:{}, w:{}, y:{}, h:{}'.format(start_x, end_x - start_x, start_y, end_y - start_y))
return frame[start_y:end_y, start_x:end_x]
def autocrop(image, threshold=0):
"""Crops any edges below or equal to threshold
Crops blank image to 1x1.
Returns cropped image.
"""
if len(image.shape) == 3:
flatImage = np.max(image, 2)
else:
flatImage = image
assert len(flatImage.shape) == 2
rows = np.where(np.max(flatImage, 0) > threshold)[0]
if rows.size:
cols = np.where(np.max(flatImage, 1) > threshold)[0]
image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
else:
image = image[:1, :1]
return image
然後對其進行測試,我做了這個簡單的功能:
import datetime
import numpy as np
import random
ITERATIONS = 10000
def test_image(img):
orig_shape = img.shape
print ('original shape: {}'.format(orig_shape))
start_time = datetime.datetime.now()
for i in range(ITERATIONS):
recursive_img = trim_recursive(img)
print ('recursive shape: {}, took {} seconds'.format(recursive_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
start_time = datetime.datetime.now()
for i in range(ITERATIONS):
contour_img = trim_contours(img)
print ('contour shape: {}, took {} seconds'.format(contour_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
start_time = datetime.datetime.now()
for i in range(ITERATIONS):
exact_contour_img = trim_contours(img)
print ('exact contour shape: {}, took {} seconds'.format(exact_contour_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
start_time = datetime.datetime.now()
for i in range(ITERATIONS):
iterative_img = trim_iterative(img)
print ('iterative shape: {}, took {} seconds'.format(iterative_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
start_time = datetime.datetime.now()
for i in range(ITERATIONS):
auto_img = autocrop(img)
print ('autocrop shape: {}, took {} seconds'.format(auto_img.shape, (datetime.datetime.now()-start_time).total_seconds()))
def main():
orig_shape = (10,10,3)
print('Empty image--should be 0x0x3')
zero_img = np.zeros(orig_shape, dtype='uint8')
test_image(zero_img)
print('Small image--should be 1x1x3')
small_img = np.zeros(orig_shape, dtype='uint8')
small_img[3,3] = 1
test_image(small_img)
print('Medium image--should be 3x7x3')
med_img = np.zeros(orig_shape, dtype='uint8')
med_img[5:8, 2:9] = 1
test_image(med_img)
print('Random image--should be full image: 100x100')
lg_img = np.zeros((100,100,3), dtype='uint8')
for y in range (100):
for x in range(100):
lg_img[y,x, 0] = random.randint(0,255)
lg_img[y, x, 1] = random.randint(0, 255)
lg_img[y, x, 2] = random.randint(0, 255)
test_image(lg_img)
main()
...,結果......
Empty image--should be 0x0x3
original shape: (10, 10, 3)
recursive shape: (0, 0, 3), took 0.295851 seconds
contour shape: (0, 0, 3), took 0.048656 seconds
exact contour shape: (0, 0, 3), took 0.046273 seconds
iterative shape: (0, 0, 3), took 1.742498 seconds
autocrop shape: (1, 1, 3), took 0.093347 seconds
Small image--should be 1x1x3
original shape: (10, 10, 3)
recursive shape: (1, 1, 3), took 1.342977 seconds
contour shape: (0, 0, 3), took 0.048919 seconds
exact contour shape: (0, 0, 3), took 0.04683 seconds
iterative shape: (1, 1, 3), took 1.084258 seconds
autocrop shape: (1, 1, 3), took 0.140886 seconds
Medium image--should be 3x7x3
original shape: (10, 10, 3)
recursive shape: (3, 7, 3), took 0.610821 seconds
contour shape: (0, 0, 3), took 0.047263 seconds
exact contour shape: (0, 0, 3), took 0.046342 seconds
iterative shape: (3, 7, 3), took 0.696778 seconds
autocrop shape: (3, 7, 3), took 0.14493 seconds
Random image--should be full image: 100x100
original shape: (100, 100, 3)
recursive shape: (100, 100, 3), took 0.131619 seconds
contour shape: (98, 98, 3), took 0.285515 seconds
exact contour shape: (98, 98, 3), took 0.288365 seconds
iterative shape: (100, 100, 3), took 0.251708 seconds
autocrop shape: (100, 100, 3), took 1.280476 seconds
在情況下,它可以幫助任何人,我去這個調整@ wordsforthewise的replacement爲基於PIL的解決方案:
bw = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = bw.shape
non_empty_columns = np.where(bw.max(axis=0) > 0)[0]
non_empty_rows = np.where(bw.max(axis=1) > 0)[0]
cropBox = (min(non_empty_rows) * (1 - padding),
min(max(non_empty_rows) * (1 + padding), rows),
min(non_empty_columns) * (1 - padding),
min(max(non_empty_columns) * (1 + padding), cols))
return img[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
(這是一個調整,原代碼預計將裁剪掉白色背景而不是黑色背景。)
謝謝。你的意思是OpenCV沒有提供建立的功能來削減邊緣。 – Gqqnbig
+1好的答案。是的,@LoveRight,這正是他的意思。處理這個問題的另一種方法是[在此討論](http://stackoverflow.com/a/10317919/176769)。 – karlphillip
只是想指出,如果它不能完全達到你想要的水平,你可以稍微調整一下門檻,我不得不將1提高到大約10.'''_,thresh = cv2.threshold(灰色, 10,255,cv2.THRESH_BINARY)''' – deweydb