使用過濾器的方法,這將過濾的列名的那些字符串出現在其中。
製作用於查找一個數據幀值other_table
和設置索引作爲類型列中。
df_status = df.filter(like = 'status')
df_type = df.filter(like = 'type')
df_type_lookup = df_type.applymap(lambda x: other_table.loc[x]).values
df['A'] = np.sum((df_status == 0).values * df_type_lookup, 1)
df['B'] = np.sum((df_status == 1).values * df_type_lookup, 1)
下面
完整的示例:
製造假數據
df = pd.DataFrame({'person_1_status':np.random.randint(0, 2,1000) ,
'person_2_status':np.random.randint(0, 2,1000),
'person_3_status':np.random.randint(0, 2,1000),
'person_1_type':np.random.randint(4, 8,1000),
'person_2_type':np.random.randint(4, 8,1000),
'person_3_type':np.random.randint(4, 8,1000)},
columns= ['person_1_status', 'person_2_status', 'person_3_status',
'person_1_type', 'person_2_type', 'person_3_type'])
person_1_status person_2_status person_3_status person_1_type \
0 1 0 0 7
1 0 1 0 6
2 1 0 1 7
3 0 0 0 7
4 0 0 1 4
person_3_type person_3_type
0 5 5
1 7 7
2 7 7
3 7 7
4 7 7
讓other_table
other_table = pd.Series({4:10, 5:20, 6:30, 7:40})
4 10
5 20
6 30
7 40
dtype: int64
篩選出的狀態和類型的列到自己的dataframes
df_status = df.filter(like = 'status')
df_type = df.filter(like = 'type')
製作查找表
df_type_lookup = df_type.applymap(lambda x: other_table.loc[x]).values
應用矩陣乘法和求和跨行。
df['A'] = np.sum((df_status == 0).values * df_type_lookup, 1)
df['B'] = np.sum((df_status == 1).values * df_type_lookup, 1)
輸出
person_1_status person_2_status person_3_status person_1_type \
0 0 0 1 7
1 0 1 0 4
2 0 1 1 7
3 0 1 0 6
4 0 0 1 5
person_2_type person_3_type A B
0 7 5 80 20
1 6 4 20 30
2 5 5 40 40
3 6 4 40 30
4 7 5 60 20
您能否提供[最小,完整和可驗證示例](http://stackoverflow.com/help/mcve)? –
是我給出的例子更清楚 – shishy