我已經在keras中構建了一個ANN,它有1個輸入層(3個輸入),1個輸出層(1個輸出)和2個分別具有12個和3個節點的隱藏層。神經網絡準確性優化
我構建和培養我的網絡的方式是:
from keras.models import Sequential
from keras.layers import Dense
from sklearn.cross_validation import train_test_split
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
dataset = numpy.loadtxt("sorted output.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:3]
Y = dataset[:,3]
# split into 67% for train and 33% for test
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed)
# create model
model = Sequential()
model.add(Dense(12, input_dim=3, init='uniform', activation='relu'))
model.add(Dense(3, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test,y_test), nb_epoch=150, batch_size=10)
排序輸出CSV文件看起來像:
所以後150個時代,我得到:損失:0.6932 - acc:0.5000 - val_loss:0.6970 - val_acc:0.1429
我的問題是:我如何修改我的NN以獲得更高的準確性?
我收到一個錯誤:No module named preprocessig – Adriano10
@ Adriano10:答案缺少'n',試着從sklearn.preprocessing導入StandardScaler' –
@NeilSlater:謝謝,糾正了錯字 – Tobias