0
我是張量流的開端。我想用我自己的醫學原始圖像數據和簡單的自動編號器,但我失敗了。我猜marix尺寸是錯誤的。這可能是一個小問題,但我無法弄清楚。使用我自己的數據的Tensorflow矩陣大小錯誤
我的圖像數據大小是512 * 512 * 1,dtype是int16。
錯誤
Traceback (most recent call last):
File "/Users/tk/Desktop/tensorflow_test/test.py", line 17, in <module>
decoded = tf.sigmoid(tf.matmul(w_dec,encoded) + b_dec)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py", line 814, in binary_op_wrapper
return func(x, y, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 73, in add
result = _op_def_lib.apply_op("Add", x=x, y=y, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 759, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2242, in create_op
set_shapes_for_outputs(ret)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1617, in set_shapes_for_outputs
shapes = shape_func(op)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1568, in call_with_requiring
return call_cpp_shape_fn(op, require_shape_fn=True)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 610, in call_cpp_shape_fn
debug_python_shape_fn, require_shape_fn)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 675, in _call_cpp_shape_fn_impl
raise ValueError(err.message)
ValueError: Dimensions must be equal, but are 625 and 262144 for 'add_1' (op: 'Add') with input shapes: [262144,625], [262144].
我的代碼
import tensorflow as tf
import numpy as np
#load_image
temp = np.fromfile('/Users/learn.raw',np.int16)
input_image = tf.to_float(temp)
# Variables
x = tf.placeholder("float",None)
w_enc = tf.Variable(tf.random_normal([625, 262144], mean=0.0, stddev=0.05))
w_dec = tf.Variable(tf.random_normal([262144, 625], mean=0.0, stddev=0.05))
b_enc = tf.Variable(tf.zeros([625]))
b_dec = tf.Variable(tf.zeros([262144]))
#model
encoded = tf.sigmoid(tf.matmul(w_enc,x) + b_enc)
decoded = tf.sigmoid(tf.matmul(w_dec,encoded) + b_dec)
# Cost Function
cross_entropy = -1. * x * tf.log(decoded) - (1. - x) * tf.log(1. - decoded)
loss = tf.reduce_mean(cross_entropy)
train_step = tf.train.AdagradOptimizer(0.1).minimize(loss)
# Train
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
print('Training...')
train_step.run(feed_dict = {x: input_image.eval()})