8
我想使用Python和OpenCV分割視網膜圖像中的血管。這裏是原始圖像:如何分割血管python opencv
理想我希望所有的血管是這樣的(不同圖像)非常明顯:
這裏是我到目前爲止已經試過。我拍攝了圖像的綠色通道。
img = cv2.imread('images/HealthyEyeFundus.jpg')
b,g,r = cv2.split(img)
然後我試圖通過以下this article創建一個匹配濾波器,這是輸出圖像是什麼:
然後我試圖做的最大熵閾值:
def max_entropy(data):
# calculate CDF (cumulative density function)
cdf = data.astype(np.float).cumsum()
# find histogram's nonzero area
valid_idx = np.nonzero(data)[0]
first_bin = valid_idx[0]
last_bin = valid_idx[-1]
# initialize search for maximum
max_ent, threshold = 0, 0
for it in range(first_bin, last_bin + 1):
# Background (dark)
hist_range = data[:it + 1]
hist_range = hist_range[hist_range != 0]/cdf[it] # normalize within selected range & remove all 0 elements
tot_ent = -np.sum(hist_range * np.log(hist_range)) # background entropy
# Foreground/Object (bright)
hist_range = data[it + 1:]
# normalize within selected range & remove all 0 elements
hist_range = hist_range[hist_range != 0]/(cdf[last_bin] - cdf[it])
tot_ent -= np.sum(hist_range * np.log(hist_range)) # accumulate object entropy
# find max
if tot_ent > max_ent:
max_ent, threshold = tot_ent, it
return threshold
img = skimage.io.imread('image.jpg')
# obtain histogram
hist = np.histogram(img, bins=256, range=(0, 256))[0]
# get threshold
th = max_entropy.max_entropy(hist)
print th
ret,th1 = cv2.threshold(img,th,255,cv2.THRESH_BINARY)
這是我得到的結果,顯然沒有顯示所有的血管:
我也試着採取匹配的濾波器版本的圖像,並採取其索貝爾值的大小。
img0 = cv2.imread('image.jpg',0)
sobelx = cv2.Sobel(img0,cv2.CV_64F,1,0,ksize=5) # x
sobely = cv2.Sobel(img0,cv2.CV_64F,0,1,ksize=5) # y
magnitude = np.sqrt(sobelx**2+sobely**2)
這使得血管蹦出更多:
然後我嘗試它Otsu分割:
img0 = cv2.imread('image.jpg',0)
# # Otsu's thresholding
ret2,th2 = cv2.threshold(img0,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Otsu's thresholding after Gaussian filtering
blur = cv2.GaussianBlur(img0,(9,9),5)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
one = Image.fromarray(th2).show()
one = Image.fromarray(th3).show()
大津並沒有給予足夠的結果。它結束了包括結果的噪音:
任何幫助表示讚賞血管怎麼可以細分成功。