0
我想通過查找示例來了解Cv_ANN_MLP。這是我想出的。我想讓MultiLayer Perceptron爲異或問題尋找解決方案。訓練完CvANN_MLP類型的「mlp」後,我想將它保存到「mlp.yaml」文件中。這是節省,但當我加載它使用,它不起作用。Cv_ANN_MLP ::裝載沒有給出正確的值,在異或程序中使用
最後,有一個函數「void mlp(__)」。我嘗試評論「mlp.load」,訓練並保存它。後來我評論了「mlp.save」和「mlp.train」,但它不起作用。
謝謝!
完整的源代碼(使用OpenCV的2.3.1與代碼::塊)
#include <iostream>
#include <math.h>
#include <string>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
void mlp(cv::Mat& trainingData, cv::Mat& trainingClasses, cv::Mat& testData, cv::Mat& testClasses);
float evaluate(cv::Mat& predicted, cv::Mat& actual) {
assert(predicted.rows == actual.rows);
int t = 0;
int f = 0;
for(int i = 0; i < actual.rows; i++) {
float p = predicted.at<float>(i,0);
float a = actual.at<float>(i,0);
if((p >= 0.5 && a >= 0.5) || (p <= 0.5 && a <= 0.5)) {
t++;
} else {
f++;
}
}
cout<<endl<<"("<<t<<"/"<<t+f<<")"<<endl;
return (t * 1.0)/(t + f);
}
using namespace cv;
int main(int argc, char* argv)
{
Mat trainingData(4, 2, CV_32FC1);
Mat testData(4, 2, CV_32FC1);
cv::Mat trainResult(trainingData.rows, 1, CV_32FC1);
cv::Mat testResult(trainingData.rows, 1, CV_32FC1);
trainingData.at<float>(0, 0) = 0;
trainingData.at<float>(0, 1) = 0;
trainResult.at<float>(0, 0) = 0;
trainingData.at<float>(1, 0) = 0;
trainingData.at<float>(1, 1) = 1;
trainResult.at<float>(1, 0) = 1;
trainingData.at<float>(2, 0) = 1;
trainingData.at<float>(2, 1) = 0;
trainResult.at<float>(2, 0) = 1;
trainingData.at<float>(3, 0) = 1;
trainingData.at<float>(3, 1) = 1;
trainResult.at<float>(3, 0) = 0;
cout<<"Training Data\n "<<trainingData<<"\n\n";
cout<<"Training Result\n "<<trainResult<<"\n\n";
testData.at<float>(0, 0) = 0;
testData.at<float>(0, 1) = 0;
testResult.at<float>(0, 0) = 0;
testData.at<float>(1, 0) = 0;
testData.at<float>(1, 1) = 1;
testResult.at<float>(1, 0) = 1;
testData.at<float>(2, 0) = 1;
testData.at<float>(2, 1) = 0;
testResult.at<float>(2, 0) = 1;
testData.at<float>(3, 0) = 1;
testData.at<float>(3, 1) = 1;
testResult.at<float>(3, 0) = 0;
cout<<"Test Data\n "<<testData<<"\n\n";
cout<<"Test Result\n "<<testResult<<"\n\n";
mlp(trainingData, trainResult, testData, testResult);
return 0;
}
void mlp(cv::Mat& trainingData, cv::Mat& trainingClasses, cv::Mat& testData, cv::Mat& testClasses) {
CvANN_MLP mlp;
CvANN_MLP_TrainParams params;
CvTermCriteria criteria;
mlp.load("mlp.yaml");
cv::Mat layers = cv::Mat(4, 1, CV_32SC1);
layers.row(0) = cv::Scalar(2);
layers.row(1) = cv::Scalar(2);
layers.row(2) = cv::Scalar(15);
layers.row(3) = cv::Scalar(1);
criteria.max_iter = 300;
criteria.epsilon = 0.00001f;
criteria.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;
params.train_method = CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale = 0.05f;
params.bp_moment_scale = 0.05f;
params.term_crit = criteria;
mlp.create(layers);
mlp.train(trainingData, trainingClasses, cv::Mat(), cv::Mat(), params);
cv::Mat response(1, 1, CV_32FC1);
cv::Mat predicted(testClasses.rows, 1, CV_32F);
for(int i = 0; i < testData.rows; i++) {
cv::Mat response(1, 1, CV_32FC1);
cv::Mat sample = testData.row(i);
mlp.predict(sample, response);
predicted.at<float>(i,0) = response.at<float>(0,0);
cout<<testData.at<float>(i, 0)<<", "<<testData.at<float>(i, 1)<<" = "<<response.at<float>(0, 0)<<endl;
}
cout << "Accuracy_{MLP} = " << evaluate(predicted, testClasses) << endl;
mlp.save("mlp.yaml");
}
檢查[this](http://stackoverflow.com/a/34547718/5008845) – Miki