我想實現一個神經網絡到c + +,但我必須表明它是很多未知的錯誤。我已經搜索並找到其他帖子,如(C++ class has no member named),但是這對我沒有幫助。可以請幫我弄清楚如何解決我收到的所有錯誤。 下面的代碼試圖創建一個神經網絡在c + +
#include <iostream>
#include <vector>
#include <cstdlib>
#include <assert.h>
#include <math.h>
using namespace std;
struct Connection
{
double weight;
double deltaWeight;
};
class Neuron {};
typedef vector<Neuron> Layer;
// ************************* class Neuron *************************
class Neuron
{
public:
Neuron(unsigned numOutputs, unsigned myIndex);
void setOutputVal(double val)
{
m_outputVal = val;
};
double getOutputVal(void) const
{
return m_outputVal;
};
void feedForward(const Layer &prevLayer);
void calcOutputGradients(double targetVal);
void calcHiddenGradients(const Layer &nextLayer);
void updateInputWeights(Layer &prevLayer);
private:
static double eta; // [0.0..1.0] overall net training rate
static double alpha; // [0.0..n] multiplier of last weight change (momentum)
static double transferFunction(double x);
static double transferFunctionDerivative(double x);
static double randomWeight(void)
{
return rand()/double(RAND_MAX);
};
double sumDOW(const Layer &nextLayer) const;
double m_outputVal;
vector<Connection> m_outputWeights;
unsigned m_myIndex;
double m_gradient;
};
double Neuron::eta = 0.15; // overall net learning rate, [0.0..1.0]
double Neuron::alpha = 0.5; // momentum, multiplier of last deltaWeight [0.0..n]
void Neuron::updateInputWeights(Layer &prevLayer)
{
// The weight are updated in the Connection container
// in the neurons in the preceding layer
for (unsigned n = 0; n < prevLayer.size(); ++n)
{
Neuron &neuron = prevLayer[n];
double oldDeltaWeight = neuron.m_outputWeights[m_myIndex].deltaWeight;
double newDeltaWeight =
eta
* neuron_getOutputVal()
* m_gradient
+ alpha
* oldDeltaWeight;
neuron.m_outputWeights[m_myIndex].deltaWeight = newDeltaWeight;
neuron.m_outputWeights[m_myIndex].weight += newDeltaWeight;
}
}
double Neuron::sumDOW(const Layer &nextLayer) const
{
double sum = 0.0;
// Sum our contributions of the errors at the nodes we feed
for (unsigned n = 0; nextLayer.size() - 1; ++n)
{
sum += m_outputWeights[n].weight * nextLayer[n].m_gradient;
}
return sum;
}
void Neuron::calcHiddenGradients(const Layer &nextLayer)
{
double dow = sumDOW(nextLayer);
m_gradient = dow * Neuron::transferFunctionDerivative(m_outputVal);
}
void Neuron::calcOutputGradients(double targetVal)
{
double delta = targetVal - m_outputVal;
m_gradient = delta * Neuron::transferFunctionDerivative(m_outputVal);
}
double Neuron::transferFunction(double x)
{
// tanh - output range [-1.0..1.0]
return tanh(x);
}
double Neuron::transferFunctionDerivative(double x)
{
// tanh derivative
return 1.0 - x * x;
}
void Neuron::feedForward(const Layer &prevLayer)
{
double sum = 0.0;
// Sum the previous layer's outputs (which are our inputs)
// Include the bias node from the previous layer
for (unsigned n = 0; n < prevLayer.size(); ++n)
{
sum += prevLayer[n].getOutputVal() *
prevLayer[n].m_outputWeights[m_myIndex].weight;
}
m_outputVal = Neuron::transferFunction(sum);
}
Neuron::Neuron(unsigned numOutputs, unsigned myIndex)
{
for (unsigned c = 0; c < numOutputs; ++c)
{
m_outputWeights.push_back(Connection());
m_outputWeights.back().weight = randomWeight();
}
m_myIndex = myIndex;
}
// ************************* class Net *************************
class Net
{
public:
Net(const vector<unsigned> &topology);
void feedForward(const vector<double> &inputVals);
void backProp(const vector<double> &targetVals);
void getResults(vector<double> &resultVals) const;
private:
vector<Layer> m_layers; // m_layers{layerNum][neuronNum]
double m_error;
double m_recentAverageError;
double m_recentAverageSmoothingFactor;
};
void Net::getResults(vector<double> &resultVals) const
{
resultVals.clear();
for (unsigned n = 0; n < m_layers.back().size() - 1; ++n)
{
resultVals.push_back(m_layers.back()[n].getOutputVals());
}
}
void Net::backProp(const vector<double> &targetVals)
{
// Calculate overall net error (RMS of output errors)
Layer &outputLayer = m_layers.back();
m_error = 0.0;
for (unsigned n = 0; n < outputLayer.size() - 1; ++n)
{
double delta = targetVals[n] - outputLayer[n].getOutputVal();
m_error += delta * delta;
}
m_error /= outputLayer.size() - 1; // get average error squared
m_error = sqrt(m_error); // RMS
// Implement a recent average measurement:
m_recentAverageError =
(m_recentAverageError * m_recentAverageSmoothingFactor + m_error)
/(m_recentAverageSmoothingFactor + 1.0);
// Calculate output layer gradients
for (unsigned n = 0; n < outputLayer.size() - 1; ++n)
{
outputLayer[n].calcOutputGradients(targetVals[n]);
}
// Calculate gradients on hidden layers
for (unsigned layerNum = m_layers.size() - 2; layerNum > 0; --layerNum)
{
Layer &hiddenLayer = m_layers[layerNum];
Layer &nextLayer = m_layers[layerNum + 1];
for (unsigned n = 0; n < hiddenLayer.size(); ++n)
{
hiddenLayer[n].calcHiddenGradients(nextLayer);
}
}
// For all layers from output to first hidden layer.
// update connection weights
for (unsigned layerNum = m_layers.size() - 1; layerNum > 0; --layerNum)
{
Layer &layer = m_layers[layerNum];
Layer &prevLayer = m_layers[layerNum - 1];
for (unsigned n = 0; n < layer.size() - 1; ++n)
{
layer[n].updateInputWeights(prevLayer);
}
}
}
void Net::feedForward(const vector<double> &inputVals)
{
assert(inputVals.size() == m_layers[0].size() - 1);
// Assign (latch) the values into the input neurons
for (unsigned i = 0; i < inputVals.size(); ++i)
{
m_layers[0][i].setOutputVal(inputVals[i]);
}
// Forward propagate
for (unsigned layerNum = 1; layerNum = m_layers.size(); ++layerNum)
{
Layer &prevLayer = m_layers[layerNum - 1];
for (unsigned n = 0; n < m_layers[layerNum].size() - 1; ++n)
{
m_layers[layerNum][n].feedForward(prevLayer);
}
}
}
Net::Net(const vector<unsigned> &topology)
{
unsigned numLayers = topology.size();
for (unsigned layerNum = 0; layerNum < numLayers; ++layerNum)
{
m_layers.push_back(Layer());
unsigned numOutputs = layerNum == topology.size() - 1 ? 0 : topology[layerNum + 1];
// We have made a new layer, now fill it with neurons, and
// add a bias neuron to the layer:
for (unsigned neuronNum = 0; neuronNum <= topology[layerNum]; ++neuronNum)
{
m_layers.back().push_back(Neuron(numOutputs, neuronNum));
cout << "Made a Neuron!" << endl;
}
}
}
int main()
{
// e.g.. { 3, 2, 1 }
// THIS IS FOR THE NUMBER OF NEURONS THAT YOU WANT!!
vector<unsigned> topology;
topology.push_back(3);
topology.push_back(2);
topology.push_back(1);
Net myNet(topology);
vector<double> inputVals;
myNet.feedForward(inputVals);
vector<double> targetVals;
myNet.backProp(targetVals);
vector<double> resultVals;
myNet.getResults(resultVals);
system("pause");
}
我已經得到錯誤,如:
錯誤:類「神經元」沒有成員「前饋」 錯誤:類「神經元」沒有成員「setOutputVal」 'neuron_OutputVal':標識符找不到
可能是相關的:https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list –
修復你的'類'重新定義問題,第一次是山姆在答案中提到的,第二,我可以看到'neuron_OutputVal'是一個錯字,這應該是'neuron.OutputVal()'。 –
工作在較小的塊並經常編譯。在他們可能成爲重大錯誤之前,你會發現一些錯誤。 – user4581301