2
比方說,我有一個DataFrame有四列,每列都有一個閾值,我想比較DataFrame的值。熊貓數據框篩選
我只是喜歡DataFrame的最小值或閾值。
例如:
df = pd.DataFrame(np.random.randn(100,4), columns=list('ABCD'))
>>> df.head()
A B C D
0 -2.060410 -1.390896 -0.595792 -0.374427
1 0.660580 0.726795 -1.326431 -1.488186
2 -0.955792 -1.852701 -0.895178 -1.353669
3 -1.002576 -0.321210 1.711597 -0.063274
4 1.217197 0.202063 -1.407561 0.940371
thresholds = pd.Series({'A': 1, 'B': 1.1, 'C': 1.2, 'D': 1.3})
此解決方案(A4和C3過濾),但必須有一個更簡單的方法:
df_filtered = df.lt(thresholds).multiply(df) + df.gt(thresholds).multiply(thresholds)
>>> df_filtered.head()
A B C D
0 -2.060410 -1.390896 -0.595792 -0.374427
1 0.660580 0.726795 -1.326431 -1.488186
2 -0.955792 -1.852701 -0.895178 -1.353669
3 -1.002576 -0.321210 1.200000 -0.063274
4 1.000000 0.202063 -1.407561 0.940371
理想情況下,我想使用的.loc過濾到位,但我還沒有設法弄清楚。我使用熊貓0.14.1(不能升級)。
響應下面是我對替代初步建議的定時測試:
%%timeit
df.lt(thresholds).multiply(df) + df.gt(thresholds).multiply(thresholds)
1000 loops, best of 3: 990 µs per loop
%%timeit
np.minimum(df, thresholds) # <--- Simple, fast, and returns DataFrame!
10000 loops, best of 3: 110 µs per loop
%%timeit
df[df < thresholds].fillna(thresholds, inplace=True)
1000 loops, best of 3: 1.36 ms per loop
比我更好的辦法,但仍創造了數據的副本(DF [DF <閾值]創建副本,然後隨即改變)。 – Alexander 2015-04-06 01:49:59