如果可以使用最小二乘擬合,可以計算出斜率,y-截距,相關係數,斜率的標準偏差,並且標準偏差y截距用下面的函數的:
import numpy as np
def lsqfity(X, Y):
"""
Calculate a "MODEL-1" least squares fit.
The line is fit by MINIMIZING the residuals in Y only.
The equation of the line is: Y = my * X + by.
Equations are from Bevington & Robinson (1992)
Data Reduction and Error Analysis for the Physical Sciences, 2nd Ed."
pp: 104, 108-109, 199.
Data are input and output as follows:
my, by, ry, smy, sby = lsqfity(X,Y)
X = x data (vector)
Y = y data (vector)
my = slope
by = y-intercept
ry = correlation coefficient
smy = standard deviation of the slope
sby = standard deviation of the y-intercept
"""
X, Y = map(np.asanyarray, (X, Y))
# Determine the size of the vector.
n = len(X)
# Calculate the sums.
Sx = np.sum(X)
Sy = np.sum(Y)
Sx2 = np.sum(X ** 2)
Sxy = np.sum(X * Y)
Sy2 = np.sum(Y ** 2)
# Calculate re-used expressions.
num = n * Sxy - Sx * Sy
den = n * Sx2 - Sx ** 2
# Calculate my, by, ry, s2, smy and sby.
my = num/den
by = (Sx2 * Sy - Sx * Sxy)/den
ry = num/(np.sqrt(den) * np.sqrt(n * Sy2 - Sy ** 2))
diff = Y - by - my * X
s2 = np.sum(diff * diff)/(n - 2)
smy = np.sqrt(n * s2/den)
sby = np.sqrt(Sx2 * s2/den)
return my, by, ry, smy, sby
print lsqfity([0,2,4,6,8],[0,3,6,9,12])
輸出:
(1, 0, 1.0, 0.0, 2.4494897427831779)
功能是由菲利普PA費爾南德斯寫的,最初發布here。