你的問題回答上blog post我鏈接到上面的意見。您可以使用rolling
,然後添加額外的屏幕以在觀察次數不符合閾值時丟棄西格瑪。
但是對於像西格馬和貝塔等簡單計算(即標準偏差和單變量回歸係數),使用更多的手動方法可以做得更好。將rolling
解決方案與我的手動解決方案進行比較。
/* generate panel by adpating the linked code */
clear
set obs 20000
gen date = _n
gen id = floor((_n - 1)/20) + 1
gen roa = int((100) * runiform())
replace roa = . in 1/4
replace roa = . in 10/12
replace roa = . in 18/20
/* solution with rolling */
/* http://statadaily.wordpress.com/2014/03/31/rolling-standard-deviations-and-missing-observations/ */
timer on 1
xtset id date
rolling sd2 = r(sd), window(4) keep(date) saving(f2, replace): sum roa
merge 1:1 date using f2, nogenerate keepusing(sd2)
xtset id date
gen tag = missing(l3.roa) + missing(l2.roa) + missing(l1.roa) + missing(roa) > 1
gen sd = sd2 if (tag == 0)
timer off 1
/* my solution */
timer on 2
rolling_sd roa, window(4) minimum(3)
timer off 2
/* compare */
timer list
list in 1/50
我顯示手動解決方案要快得多。
. /* compare */
. timer list
1: 132.38/ 1 = 132.3830
2: 0.10/ 1 = 0.0990
保存按照您的個人文件的ADO目錄rolling_sd.ado
(或在您的當前工作目錄)。我相信有人可以進一步簡化這些代碼。請注意,該代碼還具有滿足窗口前沿最小數據要求的額外優勢(即,用前三個觀察值計算西格瑪,而不是等待全部四個)。
*! 0.2 Richard Herron 3/30/14
* added minimum data requirement
*! 0.1 Richard Herron 1/12/12
program rolling_sd
version 11.2
syntax varlist(numeric), window(int) minimum(int)
* get dependent and indpendent vars from varlist
tempvar n miss xs x2s nonmiss1 nonmiss2 sigma1 sigma2
local w = `window'
local m = `minimum'
* generate cumulative sums and missing values
xtset
bysort `r(panelvar)' (`timevar'): generate `n' = _n
by `r(panelvar)': generate `miss' = sum(missing(`varlist'))
by `r(panelvar)': generate `xs' = sum(`varlist')
by `r(panelvar)': generate `x2s' = sum(`varlist' * `varlist')
* generate variance 1 (front of window)
generate `nonmiss1' = `n' - `miss'
generate `sigma1' = sqrt((`x2s' - `xs'*`xs'/`nonmiss1')/(`nonmiss1' - 1)) if inrange(`nonmiss1', `m', `w') & !missing(`nonmiss1')
* generate variance 2 (back of window, main part)
generate `nonmiss2' = `w' - s`w'.`miss'
generate `sigma2' = sqrt((s`w'.`x2s' - s`w'.`xs'*s`w'.`xs'/`nonmiss2')/(`nonmiss2' - 1)) if inrange(`nonmiss2', `m', `w') & !missing(`nonmiss2')
* return standard deviation
egen sigma = rowfirst(`sigma2' `sigma1')
end
這個問題似乎是題外話,因爲「問題,要求代碼必須證明正在解決這個問題的一個最小的瞭解。包括嘗試的解決方案,爲什麼他們沒有工作,和預期的結果。」請參閱http://stackoverflow.com/help/on-topic –
ROA未在此處解釋。這似乎是偶然的問題,但同時最好不要假設可能會有答案的人在與您完全相同的領域工作。 –
這個跨界別貼?這個確切的問題是[在博客上這裏回答](http://statadaily.wordpress.com/2014/03/31/rolling-standard-deviations-and-missing-observations/)。 –