2016-03-23 59 views
0

我讀了很多關於神經網絡最近兩個星期,我想我幾乎看到每個「XOR」方法教程在網上。但是,我無法自己開展工作。我通過簡單的「OR」神經元的方法開始。給出好的結果。我認爲我的問題是反向傳播實施。我做了一個對象方法,所以這裏是主線。神經網絡差融合

三類:

神經元

public class Neuron { 

/* 
* Attributes 
*/ 

double[] inputs; 
double[] weights; 

double output; 
double error; 

double delta; 
double deltaWeight; 

/* 
* Constructors 
*/ 

public Neuron(int nInputs) 
{ 
    inputs = new double[nInputs + 1]; 
    inputs[inputs.length - 1] = 1; // bias 
    weights = new double[nInputs + 1]; 
} 

/* 
* Methods 
*/ 

/** 
* Reset all weights of the neuron to random values between -1 and 1 
*/ 
public void reset() 
{  
    Random random = new Random(); 
    for (int i = 0; i < weights.length; i++) 
     weights[i] = (random.nextDouble() * ((0.5d - (-0.5d))) + (-0.5d)); 
} 

/** 
* Compute output for given inputs 
* @param inputs 
*/ 
public void computeOutput(double inputs[]) 
{ 
    setInputs(inputs); 
    output = Sigmoid.activation(getDotProduct()); 
} 

/** 
* Compute error for given ideal 
* @param ideal 
*/ 
public void computeError(double ideal) 
{ 
    error = ideal - output; 
    delta = error; 
} 

/** 
* Compute error for hidden neurons 
*/ 
public void computeError(FeedForwardLayer previousLayer, int position) 
{ 
    double sum = 0; 
    for (int i = 0; i < previousLayer.neurons.length; i++) 
     sum += (previousLayer.neurons[i].delta * previousLayer.neurons[i].weights[position]); 

    delta = Sigmoid.derivative(getDotProduct()) * sum; 
    error = delta; 
} 

/** 
* Adjust every weight of the neuron 
*/ 
public void adjustWeights(double lambda, double momentum) 
{ 
    for (int i = 0; i < weights.length; i++) 
    { 
     double lastDeltaWeight = deltaWeight; 
     deltaWeight = lambda * (delta * inputs[i]) + momentum * lastDeltaWeight; 
     weights[i] += deltaWeight; 
    } 
} 

@Override 
public String toString() 
{ 
    String str = ""; 
    for (int i = 0; i < weights.length; i++) 
     str = str.concat(String.format("IN|W --> %.6f | %.6f \n", (float) inputs[i], (float) weights[i])); 

    str = str.concat("Output = " + output + "\n"); 
    str = str.concat("Error = " + error + "\n"); 
    return str; 
} 

/* 
* Getters & Setters 
*/ 

/** 
* @return weights * inputs + bias 
*/ 
public double getDotProduct() 
{ 
    double sum = 0; 
    for (int i = 0; i < inputs.length; i++) 
     sum += (weights[i] * inputs[i]); 

    return sum; 
} 

/** 
* Set inputs (keep bias input) 
* @param inputs 
*/ 
public void setInputs(double[] inputs) 
{ 
    for (int i = 0; i < inputs.length; i++) 
     this.inputs[i] = inputs[i]; 
} 

/** 
* Set every weight to a single value 
* @param weight 
*/ 
public void setWeights(double weight) 
{ 
    for (int i = 0; i < weights.length; i++) 
     this.weights[i] = weight; 
} 
} 

FeedForwardLayer(包含神經元)

public class FeedForwardLayer { 

/* 
* Attributes 
*/ 

Neuron[] neurons; 
LayerTypes type; 

/* 
* Constructors 
*/ 

/** 
* First layer constructor 
* @param nNeurons 
*/ 
public FeedForwardLayer(int nInputs, int nNeurons, LayerTypes type) 
{ 
    neurons = new Neuron[nNeurons]; 
    for (int i = 0; i < neurons.length; i++) 
     neurons[i] = new Neuron(nInputs); 

    this.type = type; 
} 

/* 
* Methods 
*/ 

/** 
* Reset all weights of the layer's neurons to random values between -1 and 1 
*/ 
public void reset() 
{ 
    for (Neuron neuron : neurons) 
     neuron.reset(); 
} 

/** 
* Compute output, if layer isn't input one, you can pass null into parameter 
* @param inputs 
*/ 
public void computeOutputs(double[] inputs) 
{ 
    for (int i = 0; i < neurons.length; i++) 
     neurons[i].computeOutput(inputs); 
} 

/** 
* Compute error, if layer is output one 
* @param ideals 
*/ 
public void computeErrors(double[] ideals) 
{ 
    for (int i = 0; i < neurons.length; i++) 
     neurons[i].computeError(ideals[i]); 
} 

/** 
* Compute error, if layer isn't output one 
* @param layer n+1 
*/ 
public void computeErrors(FeedForwardLayer next) 
{ 
    for (int i = 0; i < neurons.length; i++) 
     neurons[i].computeError(next, i); 
} 

/** 
* Adjust weights for every neurons 
*/ 
public void adjustWeights(double lambda, double momentum) 
{ 
    for (Neuron neuron : neurons) 
     neuron.adjustWeights(lambda, momentum); 
} 

@Override 
public String toString() 
{ 
    String str = ""; 
    for (int i = 0; i < neurons.length; i++) 
     str = str.concat("Neuron " + i + "\n" + neurons[i]); 
    return str; 
} 

/* 
* Getters - Setters 
*/ 

/** 
* @return true if layer is input, false otherwise 
*/ 
public boolean isInput() 
{ 
    if (type == LayerTypes.INPUT) 
     return true; 

    return false; 
} 

/** 
* @return true if layer is input, false otherwise 
*/ 
public boolean isOutput() 
{ 
    if (type == LayerTypes.OUTPUT) 
     return true; 

    return false; 
} 

/** 
* @return an array of layer's outputs 
*/ 
public double[] getOutputs() 
{ 
    double[] outputs = new double[neurons.length]; 

    for (int i = 0; i < neurons.length; i++) 
     outputs[i] = neurons[i].output; 

    return outputs; 
} 

/** 
* @return array of layer's errors 
*/ 
public double[] getErrors() 
{ 
    double[] errors = new double[neurons.length]; 

    for (int i = 0; i < neurons.length; i++) 
     errors[i] = neurons[i].error; 

    return errors; 
} 

/** 
* Set all the weights of the layer to given weight 
* @param weight 
*/ 
public void setWeights(double weight) 
{ 
    for (int i = 0; i < neurons.length; i++) 
     neurons[i].setWeights(weight); 
} 
} 

FeedForwardNetwork(包含FeedForwardLayers)

public class FeedForwardNetwork { 

static final double lambda = 0.1; 
static final double momentum = 0; 

/* 
* Attributes 
*/ 

private ArrayList<FeedForwardLayer> layers; 

/* 
* Constructors 
*/ 

public FeedForwardNetwork() 
{ 
    layers = new ArrayList<FeedForwardLayer>(); 
} 

/* 
* Methods 
*/ 

/** 
* Init all the weights to random values 
*/ 
public void reset() 
{  
    for (int i = 0; i < layers.size(); i++) 
     layers.get(i).reset();; 
} 

/** 
* Compute output for all the neurons of all the layers for given inputs 
* @param inputs 
*/ 
public void feedForward(double[] inputs) 
{ 
    //System.err.println("FeedForwardNetwork.feedForward(" + inputs[0] + ", " + inputs[1] +")"); 
    for (int i = 0; i < layers.size(); i++) 
    { 
     //System.err.println("\n*** COMPUTING OUTPUT FOR LAYER " + i + "***\n"); 
     if (layers.get(i).isInput()) 
      layers.get(i).computeOutputs(inputs); 
     else 
      layers.get(i).computeOutputs(layers.get(i - 1).getOutputs()); 
    } 
} 

/** 
* Compute errors for all the neurons of all the layers starting by output layer 
* @param ideals 
*/ 
public void feedBackward(double[] ideals) 
{ 
    //System.err.println("FeedForwardNetwork.feedBackward(" + ideals[0] + ")"); 
    // For each layers starting by output one 
    for (int i = layers.size() - 1; i > 0; i--) 
    { 
     //System.err.println("*** COMPUTING ERROR FOR LAYER " + i + "***"); 
     if (layers.get(i).isOutput()) 
      layers.get(i).computeErrors(ideals); 
     else 
      layers.get(i).computeErrors(layers.get(i + 1)); 
    } 
} 

/** 
* Adjust weights of every layer 
*/ 
public void adjustWeights() 
{ 
    for (FeedForwardLayer feedForwardLayer : layers) 
     feedForwardLayer.adjustWeights(lambda, momentum); 
} 

/** 
* Train the nn with given inputs and outputs 
* @param inputs 
* @param outputs 
*/ 
public void train(double[] inputs, double... outputs) 
{ 
    feedForward(inputs); 
    feedBackward(outputs); 
    adjustWeights(); 
} 

/** 
* Add a layer to the network 
* @param layer 
*/ 
public void addLayer(FeedForwardLayer layer) 
{ 
    layers.add(layer); 
} 

@Override 
public String toString() 
{ 
    String str = ""; 
    for (int i = 0; i < layers.size(); i++) 
     str = str.concat("Layer " + LayerTypes.values()[i] + "\n" + layers.get(i)); 

    str = str.concat("\n"); 
    str = str.concat("OUTPUT = " + getOutputs()[0] + "\n"); 
    str = str.concat("ERROR = " + getError(false) + "\n"); 
    return str; 
} 
/* 
* Getters & Setters 
*/ 

public FeedForwardLayer getInputLayer() 
{ 
    return layers.get(0); 
} 

public FeedForwardLayer getOutputLayer() 
{ 
    return layers.get(layers.size() - 1); 
} 

public FeedForwardLayer getLayer(int index) 
{ 
    return layers.get(index); 
} 

public double getError(boolean abs) 
{ 
    if (abs) 
     return Math.abs(getOutputLayer().neurons[0].error); 

    return getOutputLayer().neurons[0].error; 
} 

public double[] getOutputs() 
{ 
    return getOutputLayer().getOutputs(); 
} 
} 

所以我給它劃時代的XOR表的 XOR表

X | Y | S 
0 0 0 
0 1 1 
0 1 1 
0 0 0 

訓練網絡,該網絡將輸出經過千劃時代約0.5 ... 有趣的事實是,如果我用AND表,OR表或者NAND表替換訓練集,那麼nn將在tr的S列中輸出數字 aining set ..(它將輸出0.25作爲AND和NAND表格,0.75表格作爲OR表格)

我只想知道我的實現是否足夠好使它工作,ty!

+0

應該在程序員組中試試這個問題。 –

回答

0

因此,經過一番研究,我意識到我的實現很好,除了我不明白輸入層是如何工作的。就是這樣,輸入層就像In = Out